ARTICLE

Comparison of ray-theory synthetic seismograms with finite-differences in 2D velocity model UNCONFORMITY

LUDEK KLIMEŠ
Show Less
Department of Geophysics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.,
JSE 2021, 30(3), 271–279;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Klime’, L., 2021. Comparison of ray-theory synthetic seismograms with finite- differences in 2D velocity model UNCONFORMITY. Journal of Seismic Exploration, 30: 271-279. Synthetic seismograms for an explosive point source in 2D elastic velocity model UNCONFORMITY are calculated by a 3D ray method and by 2D finite-differences followed by an approximate conversion from a line source to a point source. The demonstrated differences between 3D ray-theory seismograms and converted 2D finite- difference seismograms are discussed in detail.

Keywords
velocity model
elastic waves
synthetic seismograms
ray-theory
finite-differences
References
  1. Bucha, V. and Bulant, P. (Eds.), 2019. SW3D-CD-23 (DVD-ROM). Seismic Waves in
  2. Complex 3-D Structures, 29: 71-72. http://sw3d.cz.
  3. Bucha, V. and Klime’, L., 1999. Finite-differences above the MODEL package. Seismic
  4. Waves in Complex 3-D Structures, 8: 171-192. http://sw3d.cz.
  5. Bulant, P., 1996. Two-point ray-tracing in 3-D. Pure Appl. Geophys., 148: 421-447.
  6. Bulant, P., 1999. Two-point ray-tracing and controlled initial-value ray-tracing in 3-D
  7. heterogeneous block structures. J. Seismic Explor., 8: 57-75.
  8. Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.
  9. Cerveny, V., Klime’, L. and Psencik, L, 1988. Complete seismic ray-tracing in three-
  10. dimensional structures. In: Doornbos, D.J. (Ed.), Seismological Algorithms: 89-
  11. 168, Academic Press, New York.
  12. Cormier, V.F. and Mellen, M.H.,1984. Application of asymptotic ray theory to vertical
  13. seismic profiling. In: Tokséz, M.N. and Stewart, R.R. (Eds.), Vertical Seismic
  14. Profiling, Advanced Concepts: 28-44. Geophysical Press, Amsterdam.
  15. Klime8, L., 1996. Accuracy of finite-differences in smooth media. Pure Appl. Geophys.,
  16. 148: 39-76.
  17. Klimes, L., 2019. Comparison of ray-matrix and finite-difference methods in a simple
  18. 1-D velocity model. Studia Geophys. Geodet., 63: 247-256.
  19. Klime’, L., 2020. Effects of causal and noncausal attenuation in 2-D model
  20. UNCONFORMITY. Studia Geophys. Geodet., submitted.
  21. Kipper, F.J., 1958. Theoretische Untersuchungen iiber die Mehrfachaufstellung von
  22. Geophonen (In German). Geophys. Prosp., 6: 194-256.
  23. Miller, G., 1970. Exact ray theory and its application to the reflection of elastic waves
  24. from vertically inhomogeneous media. Geophys. J. Roy. Astron. Soc., 21: 261-
  25. Musil, M., 1989. Computation of synthetic seismograms in 2-D and 3-D media using the
  26. Gaussian beam method. Studia Geophys. Geodet., 33: 213-229.
  27. Zahradnik, J., 1995. Simple elastic finite-difference scheme. Bull. Seismol. Soc. Am.,
  28. 85: 1879-1887.
  29. Zahradnik, J. and Priolo, E., 1995. Heterogeneous formulations of elastodynamic
  30. equations and finite-difference schemes. Geophys. J. Internat., 120: 663-676.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing