ARTICLE

A time-varying wavelet estimation method based on modified spectral modeling in the T-F domain

JSE 2021, 30(3), 211–236;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Dai, Y.S., Zhang, H.Q., Zhang, Y.H., Wan, Y., Sun, W.F., Han, H.Y. and Wu, S., 2021. A time-varying wavelet estimation method based on modified spectral modeling in the T-F domain. Journal of Seismic Exploration, 30: 211-236. To effectively solve the problem existing in the time-varying seismic wavelet extraction method based on spectral modeling in the time-frequency (T-F) domain, a time-varying seismic wavelet extraction method based on modified spectral modeling in the T-F domain is proposed. For reducing the energy diffusion of the T-F spectra of seismograms, the synchrosqueezing modified S-transform (SSMST) is used to extract the T-F spectra of seismograms. The energy is gathered at the real frequency and the extraction accuracy of the T-F spectra of seismograms is improved. To solve the problem that the polynomial order needs to be determined artificially, an evaluation function describing the quality of estimated wavelet amplitude is established. The polynomial order is determined by comparing the value of the evaluation function. The phase spectra of seismic wavelets are extracted by phase-only filter. The validity of the method is verified by simulation experiments and real seismograms data processing.

Keywords
synchrosqueezing modified S-transform
wavelet extraction
determining polynomial order
phase-only filter
References
  1. Li, Z.C.. AL. F.J.. Wang. D.Y. and Wang, J.. 2015. Time-varving deconvolution method
  2. based on time-frequency domain. Progr. Geophys., 30: 2698-2705.
  3. Chi, H.Z.. Liu. C.. Shan, X.L. and Lu. O.. 2015. Application of spectral inversion for
  4. tight thin-bed sand body prediction. Geophys. Prosp. Petrol., 54: 337-344.
  5. Margrave, G.F., Lamoureux, M.P. and Henley, D.C.. 2011. Gabor deconvolution:
  6. Estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics,
  7. 76(3): W15-W30.
  8. Margrave. G.F.. 1999. Gabor deconvolution of seismogram data for source waveform
  9. and O correction. Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston:
  10. 2190-2193.
  11. Zhou, H.L., Wang, J.. Wang. M.C., Shen, M.C., Zhang, X.K. and Liang, P., 2014.
  12. Amplitude spectra compensation and phase spectra correction of seismogram data
  13. based on the generalized S transform. Appl. Geophys., 11: 468-478.
  14. Zhou, H.L.. Wang C.C.. Marfurt, K.J.. Jiang, Y.W. and Bi, J.X.. 2016. Enhancing the
  15. resolution of non-stationary seismogram data using improved time-frequency
  16. spectral modelling. Geophys. J. Internat., 205: 203-219.
  17. Wang. L.L. and Gao. J.H.. 2010. A method for absorption compensation based on
  18. adaptive molecular decomposition. Appl. Geophys., 7: 74-87.
  19. Wang. L.L.. Gao, J.H.. Zhao. W. and Jiang, X.D., 2013. Enhancing resolution of
  20. nonstationary seismic data by molecular-Gabor transform. Geophysics, 78(1):
  21. V31-V41.
  22. Gao, J.H.. Wang. L.L. and Zhao, W.. 2009. Enhancing resolution of seismogram traces
  23. based on the changing wavelet model of seismogram. Chin. J. Geophys. (in
  24. Chinese), 52: 1289-1300.
  25. Li, D.. Castagna. J. and Goloshubin, G.. 2016. Investigation of generalized S-transform
  26. analysis windows for time-frequency analysis of seismic reflection data.
  27. Geophysics, 81(3): V235-V247.
  28. Daubechies, I.. Lu, J. and Wu. H.T.. 2011. Synchrosqueezed wavelet transforms: An
  29. empirical mode decomposition-like tool. Appl. Computat. Harmon. Analys., 30:
  30. 243-261.
  31. Wang. P.. Gao, J.H. and Wang, Z.G.. 2014. Time-frequency analysis of seismogram data
  32. using synchrosqueezing transform. IEEE Geosci. Remote Sens. Lett., 11:
  33. 2042-2044.
  34. Shang, S., Han, L.. Hu, W. and Zhang, Y., 2015. Applied research of synchrosqueezing
  35. wavelet transform in seismogram spectral decomposition method. Geophys. Prosp.
  36. Petrol., 54: 51-55.
  37. Thakur. G.. Brevdo. E.. Fuékar, N. and Wu. H.T.. 2011. The Synchrosqueezing
  38. algorithm for time-varving spectral analysis: robustness properties and new
  39. paleoclimate applications. Sign. Process., 93: 1079-1094.
  40. Huang, Z.L., Zhang, J. and Zhao, T.. 2016. Synchrosqueezing S-transform and its
  41. application in seismogram spectral decomposition. IEEE Transact. Geosci. Remote
  42. Sens., 54: 817-825.
  43. Liu, H.. Zhang. J.Z. and Huang. Z.L.. 2017. The time-frequency analvsis of seismogram
  44. based on synchrosqueezing S-transform. Oil Geophys. Prosp., 52: 689-695.
  45. Tang. B.W.. Zhao. B.. Wu. Y.H. and Li. H.O.. 2010. A new way to realize spectral
  46. modeling deconvolution. Oil Geophys. Prosp., 45 (zengkan1): 66-70.
  47. Rosa. A.L. and Ulrych, T.J.,1991. Processing via spectral modeling. Geophysics, 56:
  48. 1244-1251.
  49. Dai, Y.S.. Zhang, M.M. and Zhang, Y.N., 2015. Time-variant mixed-phase seismogram
  50. wavelet estimation based on spectral modeling in the time-frequency domain. Oil
  51. Geophys. Prosp., 50: 830-853.
  52. Wang. R.R.. Dai. Y.S. and Zhang. Y.N.. 2015. Time-varving wavelet extraction methods
  53. in non-stationary seismogram. Progr. Geophys. (in Chinese), 30: 700-708.
  54. Wang. R.R.. 2016. Time-varving wavelet extraction method using the combination of
  55. spectral modeling. local similarity and adaptive segmentation. China University of
  56. Petroleum (East China), Qingdao.
  57. Li, Z.C.. Zhao. Y.P. and Xu. W.C.. 2015. Time-varving wavelet extraction method based
  58. on S-domain spectral modeling. Progr. Geophys. (in Chinese), 30: 2706-2713.
  59. Li, Z.C., Li, D. and Wang, D.Y.. 2013. Adaptive spectral modeling deconvolution based
  60. on the constraint of signal to noise ratio spectra. Progr. Geophys. (in Chinese), 28:
  61. 301-309.
  62. Sheng. L.Z.. 2015. Curve fitting principle and its application research. Changsha
  63. University of Science & Technology, Changsha, Hunan, China.
  64. Gao, J.H.. Zhang. B. and Han. W.. 2017. A new approach for extracting the amplitude
  65. spectra of the seismogram wavelet from the seismogram traces. Inverse Probl., 33:
  66. 1-16.
  67. Wang. S.S.. Dai. Y.S. and Wang. F.. 2010. Research on the ARMA model for extraction
  68. of in seismogram wavelets. Progr. Geophys. (in Chinese), 25: 2109-2114.
  69. Zhou, X. Y., 1989. Constant phase correction. Oil Geophys. Prosp., 24: 119-129.
  70. Yu, Y.C.. Wang, S.X. and Yuan. S.Y.. 2011. Phase estimation in bispectral domain
  71. based on conformal mapping and applications in seismic wavelet estimation. Appl.
  72. Geophys., 8: 36-47.
  73. Zhang. Y.N.. Dai. Y.S.. Ding. J.J.. Zhang. M.M. and Wang. R.R.. 2014. A wavelet phase
  74. correction method based on the phase-only filter. Geophys. Prosp. Petrol., 53:
  75. 26-31.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing