ARTICLE

Analysis of GPR hyperbola targets using image processing techniques

MOHAMMAD ALI SHAHRABI HOSEIN HASHEMI
Show Less
Institute of Geophysics, University of Tehran, Tehran, Iran,
JSE 2021, 30(6), 561–575;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Shahrabi, M.A. and Hashemi, H., 2021. Analysis of GPR hyperbola targets using image processing techniques. Journal of Seismic Exploration, 30: 561-575. The Canny edge detection method is an image processing technique that can be used to distinguish the edges of an image. This edge detection operator is mostly used for the analysis of object boundaries of images such as edge-based face recognition, edge-based obstacle detection, edge-based target recognition, image compression, etc. Ground Penetrating Radar (GPR) is a non-destructive geophysical method that is most often applied to detect underground features such as subsurface facilities, geological structures, changes in material properties, and voids and cracks. Small underground targets such as pipes and cables are expressed into radargrams as hyperbolic-shaped signatures depends on the orientation of the acquisition direction concerning the position of the object. Taking into account the large quantity of acquired GPR data during a field operation, the manual detection and localization of hyperbolas in radargrams can be time consuming and impracticable in large-scale surveys. In this work, the applicability of the Canny edge detection operator is investigated in the GPR processing procedure. In particular, Canny edge detection is used as a processing step for the detection of hyperbolic reflections in GPR images. The open-source finite-difference time-domain (FDTD) simulator GPRMax was used to generate synthetic radargrams.

Keywords
GPR processing
Canny edge detection
edge linking
velocity analysis
References
  1. Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M.TC., Nguyen, V.T. and Ericsen A.,
  2. Automatic detection of buried utilities and solid objects with GPR using
  3. neural networks and pattern recognition. J. Appl. Geophys., 43: 157-165.
  4. Balanis, C.A., 1989. Advanced Engineering Electromagnetics. John Wiley & Sons, New
  5. York.
  6. Bergmann, T., Robertsson, J. and Holliger, K., 1998. Finite-difference modeling of
  7. electromagnetic wave propagation in dispersive and attenuating media.
  8. Geophysics, 63: 856-867.
  9. Bourgeois, J.M. and Smith, G., 1996. A fully three-dimensional simulation of a ground-
  10. penetrating radar: FDTD theory compared with experiment. IEEE T Antenn.
  11. Propag., 34: 36-44.
  12. Bruschini, C., Gros, B., Guerne, F., Piece, P. and Carmona, O.Y., 1998. Ground-
  13. penetrating radar and imaging metal detector for antipersonnel mine detection.
  14. J. Appl. Geophys., 40: 59-71. DOI: 10.1016/S0926-985 1(97)00038-4
  15. Bungey, J.H., Millard, S. and Shaw, M.R., 1997. Radar assessment of post-tensioned
  16. concrete. Engineer. Techn. Press, 1: 331-339.
  17. Canny, J., 1986. A computational approach to edge detection. IEEE Transact. Patt.
  18. Anal. Mach. Intell., 8: 679-714.
  19. Chen, H. and Anthony, G.C., 2010. Probabilistic robust hyperbola mixture model for
  20. interpreting ground penetrating radar data. Proc. Internat. Joint Conf. Neural
  21. Netw. (IJCNN), Barcelona.
  22. Daniels, D.J., 2004. Ground Penetrating Radar. The Institution of Electrical
  23. Engineers, London. DOI: 10.1049/PBRAOI5E.
  24. Daniels, D., 1996. Subsurface penetrating radar. London. The Institution of Electrical
  25. Engineers, London.
  26. Dou, Q., Wei, L., Magee, D. and Cohn A., 2016: Real-time hyperbola recognition and
  27. fitting in GPR data. IEEE Transact. Geosci. Remote Sens., 55: 51-62.
  28. Forde, M.C. and McCavitt, N., 1993. Impulse radar testing of structures. Proc. Inst. Civ.
  29. Engineer. Struct. Build.: 96-99.
  30. Giannopoulos, A., 2005. Modelling ground penetrating radar by GPRMax. Construct.
  31. Build. Mater., 19: 755-762.
  32. Gianoppollis, A., 1997. The investigation of transmission-line matrix and finite-
  33. difference time-domain methods for the forward problem of ground probing
  34. radar. Ph.D. Thesis, Univerity of York, York.
  35. Giannopoulos, A., 2005. Modelling ground penetrating radar by GPRMax. Construct.
  36. Build. Mater., 19: 755-762.
  37. Haralick, R., 1984. Digital step edges from zero crossings of second directional. IEEE
  38. Transact. Patt. Anal. Mach. Intell., 6: 58-68.
  39. Kabade, A.L. and Sangam, D.V., 2016. Canny edge detection algorithm. Internat. J.
  40. Adv. Res. Electron. Communic. Engineer. (IJARECE), 5: 1292-1295.
  41. Kitti, T., Jaruwan, T. and Chaiyapon, T., 2012. An object recognition and identification
  42. system using the Harris corner detection method. Internat. J. Mach. Learn.
  43. Comput., 2: 462-465.
  44. Maini. R. and Aggarwal, H., 2009. Study and comparison of various image edge
  45. detection techniques. Internat. J. Image Process., (IJIP), 3: 1-11.
  46. Mertens, L., Persico, R., Matera, L. and Lambot, S., 2015. Automated detection of
  47. reflection hyperbolas in complex GPR images with no a-priori knowledge on the
  48. medium. IEEE Transact. Geosci. Remote Sens., 54: 580-596.
  49. Millard, S.G, Shaw, M.R., Giannopoulos, A. and Soutsos, M.N., 1998. Modelling of
  50. subsurface pulsed radar for nondestructive testing of structures. ASCE J. Mater.
  51. Civil Engineer., 10: 188-196.
  52. Shahrabi, M.A., Hashemi, H. and Hafizi, M.K., 2016. Application of mixture of Gaussian
  53. clustering on joint facies interpretation of seismic and magnetotelluric sections.
  54. Pure Appl. Geophys., 173: 623-626.
  55. Shihab, S. and Al-Nuaimy, W., 2005. Radius estimation for cylindrical objects detected
  56. by ground-penetrating radar. Subsurf. Sens. Technol. Applicat.: 6: 151-166.
  57. DOI: 10.1007/s11220-005-0004-1.
  58. Taflove, A., 1995. Computational electrodynamics: the finite-difference time-domain
  59. method. Artech House, Boston.
  60. Windsor, C., Capineri L. and Falorni P., 2013. A data pair-labeled generalized Hough
  61. transform for radar location of buried objects. IEEE Geosci. Remote Sens. Lett.,
  62. 11: 124-127. DOT: 10.1109/LGRS.2013.2248119.
  63. Warren, C. and Giannopoulos, A., 2011. Creating finite-difference time-domain models
  64. of commercial ground-penetrating radar antennas using Taguchi’s optimization
  65. method. Geophysics, 76(2): Z37-Z47. DOI: 10.1190/1.3548506.
  66. Zarei, M. and Hashemi, H., 202. Primary-multiple separation technique based on image
  67. Radon transform. Arab. J. Geosci., 14: 462.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing