Cite this article
1
Download
5
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Use of vibrator harmonics as a sweep signal

ORHAN GÜRELI ARAR
Show Less
Petrol ve Gaz AUP AŞ, Dumluca Sok No:19 Beysukent-Ankara,Turkey,
JSE 2021, 30(6), 505–528;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Giireli, O., 2021. Use of vibrator harmonics as a sweep signal. Journal of Seismic Exploration, 30: 505-528. In the conventional vibroseis method, the signal processing algorithms, including cross-correlation and deconvolution, are applied to convert the raw shot data into a seismic section. Vibrators are the best of the seismic sources and are widely used in exploration worldwide. The vibroseis seismic data quality is directly related to sweep signal harmonics. In other words, if the harmonic noise level increases, seismic quality decreases. In conventional vibrators, harmonic distortion is generated as a result of nonlinear coupling of vibrators and considered as coherent noises and consequently effects of these harmonic contaminations are subject to the elimination from the field records. Over the years different formalisms, using sweep parameters and phases, are proposed for the attenuation of these effects. In this study a new algorithm is developed using harmonic components of the signal sweep as an auxiliary source, instead of striving to eliminate them, in order to broaden the frequency bandwidth of the seismic imaging. Our approach is tested on synthetic and real data and results are discussed.

Keywords
sweep
harmonic
harmonic distortion elimination
sweep signal
high frequency sweep
References
  1. Abd El-Aal, A.E.K., 2010. eliminating upper harmonic noise in vibroseis data via
  2. numerical simulation, Geophys. J. Internat.,181: 1499-1509.
  3. doi: 10.1111/j.1365-246X.2010.04594.x.
  4. Abd El-Aal, A.E.K., 2011. Harmonic by harmonic removal technique for improving
  5. vibroseis data quality. Geophys. Prosp., 59: 279-294.
  6. Andersen, K.D., 1995. Method for Cascading Sweeps for A Seismic Vibrator, U.S.
  7. Patent, 4 410 517.
  8. Babaia, F., Mender, M. and Benchabana, C., 2012. Vibroseis harmonic noise cancelling
  9. by time varying filtering with reference. World Gas Conf., Kuala Lumpur.
  10. Bagaini, C., 2006. Overview of simultaneous vibroseis acquisition methods. Expanded
  11. Abstr., 76th Ann. Internat. SEG Mtg., New Orleans: 70-74.
  12. Bagaini, C., 2010. Acquisition and processing of simultaneous vibroseis data.
  13. Geophys.Prosp., 58: 81-99.
  14. Baobin, W., Hequn, L., Bo, Z., Zhi, H., Mugang, Z. and Lulu, M., 2012. Cross-harmonic
  15. noise removal on slip-sweep vibroseis data. Expanded Abstr., 82nd Ann. Internat.
  16. SEG Mtg., Las Vegas, 48: 1-5. DOL: 10.1190/segam2012-0059.1.
  17. Benabentos, M., Ortigosa, F., Moldoveanu, N. and Munoz, P., 2006. Cascaded sweeps - a
  18. method to improve vibroseis acquisition efficiency: A field test. The Leading
  19. Edge, June: 693-697.
  20. Dal Moro, G., Scholtz, P. and Iranpour, K., 2007. Harmonic noise attenuation for
  21. vibroseis data, GNGTS — 26. C. Nazionale.
  22. Eisner, E., 1974. Method for Determining Optimum Seismic Pulse, US Patent. 3,815,704.
  23. Espey, H.R., 1988. Attenuation of vibrator harmonic ghosts. Expanded Abstr.,
  24. ASEG/SEG Conf., Adelaide.
  25. Gang, M.Y. and Yuan, Z., 2014. Harmonic noise removal on vibroseis slip-sweep data
  26. based on model method. CPS/SEG Internat. Geophys. Conf., Beijing, China.
  27. Harrison, C.B., Margrave, G., Lamoureux, M., Siewert, A. and Barrett, A., 2011.
  28. Harmonic decomposition of vibroseis sweeps using Gabor analysis. CREWES
  29. Res. Rep. 2011.
  30. Harrison, C.B., Margrave, G., Lamoureux, M., Siewert, A., Barrett, A. and Isaac, L.H.,
  31. Towards using harmonic “contamination” as signal for thin reflectors.
  32. CREWES Res. Rep., Vol. 24.
  33. Harrison, C.B., Margrave, G., Lamoureux, M., Siewert, A. and Barrett, A., 2013.
  34. Harmonic decomposition of a vibroseis sweep using Gabor analysis. AAPG
  35. Datapages/Search and Discovery Article #90174, Calgary, AB, Canada.
  36. Iranpour, K., 2010. Harmonic Attenuation Using Multiple Sweep Rates. U.S. Patent,
  37. 0085 837.
  38. Jianjun, X., Jie, Y., Yong, G. and Xiling, C., 2012. Suppressing harmonics based on
  39. singular value decomposition in time frequency domain. Expanded Abstr., 82nd
  40. Ann. Internat. SEG Mtg., Las Vegas: 1052-3812.
  41. DOI http://dx.doi.org/10.1190/segam2012-0119.1.
  42. Juan, L., Yong, L., Long,P., Jiexin, S. and Jinlan, W., 2014. Discussion on a method for
  43. harmonic noise elimination on vibroseis slip-sweep data. CPS/SEG Internat.
  44. Geophys. Conf., Beijing.
  45. Larsen, G., Hewitt, P. and Siewert, A., 2007. Correlating versus inverting vibroseis
  46. records: recovering what you put into the ground. CSPG CSEG Convention.
  47. Lebedev, A.V. and Beresnev, I.A., 2004. Nonlinear distortions of signals radiated by
  48. vibroseis sources. Geophysics, 69: 968-977.
  49. Li, X.P., 1997. Decomposition of vibroseis data by the multiple filter technique.
  50. Geophysics, 62: 980-991.
  51. Li, X.P., Sollner, W. and Hubral, P., 1995. Elimination of harmonic distortion in vibroseis
  52. data. Geophysics, 60: 503-516.
  53. Martin, F.D. and Munoz, P.A., 2010. Deharmonics, a method for harmonic noise removal
  54. on vibroseis data. Extended Abstr., 72nd EAGE Conf., Barcelona.
  55. Martin, J.E., 1993. Simultaneous vibroseis recording, Geophys. Prosp., 41: 943-967.
  56. Martin, J.E. and White, R.E., 1989. Two methods for continuous monitoring of harmonic
  57. distortion in vibroseis signals. Geophys. Prosp., 37: 851-872.
  58. Meunier, J. and Bianchi, T., 2002. Harmonic noise reduction opens the way for array size
  59. reduction in vibroseis operations. Expanded Abstr., 72nd Ann. Internat. SEG Mtg.,
  60. Salt Lake City: 70-73.
  61. Meunier, J. and Bianchi, T., 2003. Method of Reducing Harmonic Noise in Vibroseis
  62. Operations, U.S. patent, 6 603 707.
  63. Moerig, R., Barr, F.J., Nyland, D.L. and Sitton, G., 2004. Method of Using Cascaded
  64. Sweeps for Source Coding and Harmonic Cancellation. U.S. Patent. 6,687,619.
  65. Okaya, A.D., Karageorgi, E., McEvilly, T.V. and Malin, P.E., 1992. Removing vibrator
  66. induced correlation artifacts by filtering in frequency-uncorrelated time space.
  67. Geophysics, 57: 916-926.
  68. Polom, U., 1997. Elimination of source-generated noise from correlated vibroseis data
  69. (the 'Ghost-Sweep' problem). Geophys. Prosp., 45: 571-591.
  70. Rietsch, E., 1981. Reduction of harmonic distortion in vibratory source records.
  71. Geophys.Prosp., 29: 178-188.
  72. Rozemond, H.J., 1996. Slip-Sweep acquisition. Expanded Abstr., 66th Ann. Internat. SEG
  73. Mtg., Denver: 64-67.
  74. Scholtz, P., 2002. Amplitude analysis of harmonics on vibrator generated direct waves.
  75. Extended Abstr., 64th EAGE Conf., Florence: Z-99.
  76. Scholtz, P., 2003. Constructing an output signal estimate of a vibratory source. Extended
  77. Abstr., 65th EAGE Conf., Stavanger.
  78. Scholtz P., 2004. Validating the basic assumptions in a vibratory source signal estimation
  79. method. Extended Abstr., 66th EAGE Conf., Paris.
  80. Schrodt, J.K., 1987. Techniques for improving vibroseis data. Geophysics, 52: 469-482.
  81. Sercel, 1999. VE432 Training Course Manuel, Chapter: 8, 6-1, 6-10.
  82. Seriff, A.J. and Kim, W.H., 1970. The effect of harmonic distortion in the use of vibratory
  83. surface sources. Geophysics, 35: 234-246.
  84. Sharma, S.P., Tildy, P., Iranpour, K. and Scholtz, P., 2009. Attenuation of harmonic noise
  85. in vibroseis data using simulated annealing. Geophys. Res. Abstr., 11: 2009-8693.
  86. Sicking, C., Fleure, T., Nelan, S. and McLain, B., 2009. Slip sweep harmonic noise
  87. rejection on correlated shot data. Expanded Abstr., 79th Ann. Internat. SEG Mtg.,
  88. Houston, 36-40. DOT: 10.1190/1.3255636.
  89. Silverman, D., 1979. Method of Three Dimensional Seismic Prospecting, U.S. Patent.
  90. 4,159,463.
  91. Sorkin, S.A., 1972. Sweep Signal Seismic Exploration, U.S. Patent. 3,786,409.
  92. Walker, D., 1995. Harmonic resonance structure and chaotic dynamics in the earth-
  93. vibrator system. Geophys. Prosp., 43: 487-507.
  94. Wei, Z. and Hall, M.A., 2011. Analyses of vibrator and geophone behavior on hard and
  95. soft ground. The Leading Edge, Febr.: 132-137.
  96. Wei, Z., Phillips, T.F. and Hall, M.A., 2010. Fundamental discussions on seismic
  97. vibrators. Geophysics, 75(6): W13-W25.
  98. Wei, Z., Sallas, J.J., Crowell, J.M. and Teske, J.E., 2007. Harmonic distortion reduction
  99. on vibrators — suppressing the supply pressure ripples. Expanded Abstr., 77th
  100. Ann. Internat. SEG Mtg, San Antonio: 51-55.
  101. Wuxiang, C., 2010. To attenuate harmonic distortion by the force signal of vibrator.
  102. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver.
  103. Yongsheng, S., Changhui, W., Mugang, Z., Xuefeng, Z., Zhenchun, L., Fenglei, L. and
  104. Lieqian, D., 2011. A method for harmonic noise elimination in slip sweep data.
  105. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing