ARTICLE

Seismic residual static correction using BEADS

ZAHRA SADEGHI ALIREZA GOUDARZI PARVANEH PAKMANESH SADEGH MOGHADDAM
Show Less
Department of Geophysics, Graduate University of Advanced Technology, Kerman, Iran,
JSE 2022, 31(1), 65–80;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sadeghi, Z., Goudarzi, A., Pakmanesh, P. and Moghaddam, S., 2022. Seismic residual static correction using BEADS. Journal of Seismic Exploration, 31: 65-80. When seismic waves propagate through layers close to the surface, topography and velocity variations, as well as the thickness of this layer, change the shape of the travel-time hyperbolas. These deviations are known as static and cause misalignment and loss events in the CMP gathers, so estimating residual statics in complex areas is one of the greatest challenges in seismic data processing, and the results derived from them will affect the quality of the final reconstructed image and the results of the interpretation. In this research, at least in the category of seismic data processing, sparsity for the residual static correction is implemented for the first time. Baseline estimation and denoising using sparsity (BEADS) is based on modeling the series of seismogram peaks, as sparse with sparse derivatives, and additionally on modeling the datum as a low-pass signal. This method estimates the seismogram datum and residual static correction with sparsity and it's far assessed through evaluating with Gaussian smoothing that is a traditional method, using both synthetic and real seismic data.

Keywords
residual static correction
sparsity
datum correction
sparse derivative
penalty function
low-pass filtering
References
  1. Aghamiri, S.H. and Gholami, A., 2016. Residual static correction using denoising in the
  2. fx domain. J. Res. Appl. Geophys., 2: 1-9. DOI: 10.22044/JRAG.2016.652
  3. Barwick, V.J., 1999. Sources of uncertainty in gas chromatography and high-
  4. performance liquid chromatography. J. Chromatogr. A, 849: 13-33.
  5. Bioucas-Dias, J.M. and Figueiredo, M.A.T., 2008. An iterative algorithm for linear
  6. inverse problems with compound regularizers. Proc. Internat. Conf. Image
  7. Process.: 685-688.
  8. Brown, C.D., Vega-Montoto, L. and Wentzell, P.D., 2000. Derivative preprocessing and
  9. optimal corrections for baseline drift in multivariate calibration. Appl. Spectrosc.,
  10. 54: 1055-1068.
  11. Cappadona, S., Levander, F., Jansson, M., James, P., Cerutti, S. and Pattini, L., 2008.
  12. Wavelet-based method for noise characterization and rejection in high-
  13. performance liquid chromatography coupled to mass spectrometry. Anal. Chem.,
  14. 80: 4960-4968.
  15. Chan, T.F., Osher, S. and Shen, J., 2001. The digital TV filter, and nonlinear denoising.
  16. IEEE Trans. Image Process, 10: 231-241.
  17. Chau, F.T. and Leung, A.K.-M., 2000. Application of wavelet transform in processing
  18. chromatographic data. In: Walczak, B. (Ed.), Wavelets in Chemistry. Elsevier
  19. Science Publishers, Amsterdam: 205-223. DOI:10.1016/S0922-3487(00)80034-9.
  20. Chen, S.S., Donoho, D.L. and Donoho, M.A., 1998. Atomic decomposition by basis
  21. pursuit. SIAM J. Sci. Comput., 20: 33-61.
  22. Elboth, T., Qaisrani, H.H. and Hertweck, T., 2008. De-noising seismic data in the time-
  23. frequency domain. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas.
  24. Doi: doi.org/10.1190/1.3063887.
  25. Felinger, A., 1998. Data Analysis and Signal Processing in Chromatography. Elsevier
  26. Science Publishers, Amsterdam.
  27. Figueiredo, M.A.T., Bioucas-Dias, J.M. and Nowak, R.D., 2007. Majorization—
  28. minimization algorithms for wavelet-based image restoration. IEEE Transact.
  29. Image Process., 16: 2980-2991.
  30. Fischer, R., Hanson, K., Dose, V. and von der Linden, W., 2000. Background estimation
  31. in experimental spectra. Phys. Review E, 61: 1152-1160.
  32. Gan, F., Ruan, G. and Mo, J., 2006. Baseline correction by improved iterative
  33. polynomial fitting with automatic threshold. Chem. Intell. Lab. Syst., 82: 59-65.
  34. Gulam Razul, S., Fitzgerald, W.J. and Andrieu, C., 2003. Bayesian model selection and
  35. parameter estimation of nuclear emission spectra using RJMCMC. Nucl. Instrum.
  36. Meth. Phys., 497: 492-510.
  37. Hatherly, P.J., Urosevic, M., Lambourne, A. and Evans, B.J., 1994. A simple approach to
  38. calculating refraction statics corrections. Geophysics, 59: 156-160.
  39. Hu, Y., Jiang, T., Shen, A., Li, W., Wang, X. and Hu, J., 2007. A background
  40. elimination method based on wavelet transform for Raman spectra. Chemometr.
  41. Intell. Lab. Syst., 85: 94-101.
  42. Kneen, M.A. and Annegarn, H.J., 1996. Algorithm for fitting XRF, SEM and PIXE X-
  43. ray spectra backgrounds. Nucl. Instr. Meth. Phys. Res. Sect. B.: 209-213.
  44. Kutyniok, G., 2014. Geometric separation by single-pass alternating thresholding. Appl.
  45. Computat. Harmon. Analys., 36: 23-50.
  46. Laeven, J.M. and Smit, H.C., 1985. Optimal peak area determination in the presence of
  47. noise. Anal. Chim. Acta, 176: 77-104. doi.org/10.1016/S0003-2670(00)8 1636-0.
  48. Liu, Y., Cai, W. and Shao, X., 2013. Intelligent background correction using an adaptive
  49. lifting wavelet. Chemometr. Intell. Lab. Syst., 25: 11-17.
  50. Mazet, V., Carteret, C., Brie, D., Idier, J. and Humbert, B., 2005. Background removal
  51. from spectra by designing and minimizing a non-quadratic cost function.
  52. Chemometr. Intell. Lab. Syst., 76. 121-133
  53. McNulty, D.A. and MacFie, H.J.H., 1998. The effect of different baseline estimators on
  54. the limit of quantification in chromatography. J. Chemomet., 11: 1-11.
  55. Moore, A.W. and Jorgenson, J.W., 1993. Median filtering for removal of low-frequency
  56. background drift. Analyt. Chem., 65: 188-191.
  57. Ning, X., Selesnick, I. and Duval, L., 2014. Chromatogram baseline estimation and
  58. denoising using sparsity (BEADS). Chemometr. Intell. Lab. Syst., 139: 156-167.
  59. Pan, L., Liu, Y., Zheng, H., Zhao, Y. and Guo, Q., 2019. First-break residual static
  60. corrections applied in the southern part of Anjihai area. Geophys. Prosp., 54:
  61. 274-279.
  62. Rakheja, P. and Vig, R., 2016. Image denoising using combination of median filtering
  63. and wavelet transform. Int. J. Comput. Appl., 141(9).
  64. Ronen, J. and Claerbout, J.F., 1985. Surface-consistent residual statics estimation by
  65. stack-power maximization. Geophysics, 50: 2759-2767.
  66. de Rooi, J.J. and Eilers, P.H.C., 2012. Mixture models for baseline estimation.
  67. Chemometr. Intell. Lab. Syst., 117: 56-60.
  68. Ruckstuhl, A.F., Jacobson, M.P., Field, R.W. and Dodd, J.A., 2001. Baseline subtraction
  69. using robust local regression estimation. J. Quantit. Spectrosc. Radiat. Transf.,
  70. 68: 179-193.
  71. Smite, H.C. and Steigstra, H., 1988. Noise and detection limits in signal-integrating
  72. analytical methods. In: Currie, L.A. (Ed.), Detection in Analytical Chemistry:
  73. Importance, Theory, and Practice. ACS Symposium Series, American Chemical
  74. Soc.: 126-148. DOI: 10.1021/bk-1988-0361.ch007.
  75. Wiggins, R.A., Larner, K.L. and Wisecup, R.D., 1976. Residual statics analysis as a
  76. general linear inverse problem. Geophysics, 41: 922-938.
  77. Zhang, Z.M., Chen, S. and Liang, Y.Z., 2010. Baseline correction using adaptive
  78. iteratively reweighted penalized least squares. The Analyst, 135: 1138-1146.
  79. DOI: 10.1039/b922045c.
  80. Zhao, J., Li, J. and Cheng, J., 2019. Seismic gathers residual static correction based on
  81. matching pursuit algorithm. Expanded Abstr., 89th Ann. Internat. SEG Mtg., San
  82. Antonio: 2918-2922.
  83. Zhou, Q., Cao, L. and Chen, A., 2018. Residual static corrections with the niche genetic
  84. algorithm based on Poisson disk sampling. Geophys. Prosp., 53: 896-902.
  85. DOI: 10.13810/j.cnki. ISSN. 1000-72 10.2018.05.002
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing