Seismic residual static correction using BEADS

Sadeghi, Z., Goudarzi, A., Pakmanesh, P. and Moghaddam, S., 2022. Seismic residual static correction using BEADS. Journal of Seismic Exploration, 31: 65-80. When seismic waves propagate through layers close to the surface, topography and velocity variations, as well as the thickness of this layer, change the shape of the travel-time hyperbolas. These deviations are known as static and cause misalignment and loss events in the CMP gathers, so estimating residual statics in complex areas is one of the greatest challenges in seismic data processing, and the results derived from them will affect the quality of the final reconstructed image and the results of the interpretation. In this research, at least in the category of seismic data processing, sparsity for the residual static correction is implemented for the first time. Baseline estimation and denoising using sparsity (BEADS) is based on modeling the series of seismogram peaks, as sparse with sparse derivatives, and additionally on modeling the datum as a low-pass signal. This method estimates the seismogram datum and residual static correction with sparsity and it's far assessed through evaluating with Gaussian smoothing that is a traditional method, using both synthetic and real seismic data.
- Aghamiri, S.H. and Gholami, A., 2016. Residual static correction using denoising in the
- fx domain. J. Res. Appl. Geophys., 2: 1-9. DOI: 10.22044/JRAG.2016.652
- Barwick, V.J., 1999. Sources of uncertainty in gas chromatography and high-
- performance liquid chromatography. J. Chromatogr. A, 849: 13-33.
- Bioucas-Dias, J.M. and Figueiredo, M.A.T., 2008. An iterative algorithm for linear
- inverse problems with compound regularizers. Proc. Internat. Conf. Image
- Process.: 685-688.
- Brown, C.D., Vega-Montoto, L. and Wentzell, P.D., 2000. Derivative preprocessing and
- optimal corrections for baseline drift in multivariate calibration. Appl. Spectrosc.,
- 54: 1055-1068.
- Cappadona, S., Levander, F., Jansson, M., James, P., Cerutti, S. and Pattini, L., 2008.
- Wavelet-based method for noise characterization and rejection in high-
- performance liquid chromatography coupled to mass spectrometry. Anal. Chem.,
- 80: 4960-4968.
- Chan, T.F., Osher, S. and Shen, J., 2001. The digital TV filter, and nonlinear denoising.
- IEEE Trans. Image Process, 10: 231-241.
- Chau, F.T. and Leung, A.K.-M., 2000. Application of wavelet transform in processing
- chromatographic data. In: Walczak, B. (Ed.), Wavelets in Chemistry. Elsevier
- Science Publishers, Amsterdam: 205-223. DOI:10.1016/S0922-3487(00)80034-9.
- Chen, S.S., Donoho, D.L. and Donoho, M.A., 1998. Atomic decomposition by basis
- pursuit. SIAM J. Sci. Comput., 20: 33-61.
- Elboth, T., Qaisrani, H.H. and Hertweck, T., 2008. De-noising seismic data in the time-
- frequency domain. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas.
- Doi: doi.org/10.1190/1.3063887.
- Felinger, A., 1998. Data Analysis and Signal Processing in Chromatography. Elsevier
- Science Publishers, Amsterdam.
- Figueiredo, M.A.T., Bioucas-Dias, J.M. and Nowak, R.D., 2007. Majorization—
- minimization algorithms for wavelet-based image restoration. IEEE Transact.
- Image Process., 16: 2980-2991.
- Fischer, R., Hanson, K., Dose, V. and von der Linden, W., 2000. Background estimation
- in experimental spectra. Phys. Review E, 61: 1152-1160.
- Gan, F., Ruan, G. and Mo, J., 2006. Baseline correction by improved iterative
- polynomial fitting with automatic threshold. Chem. Intell. Lab. Syst., 82: 59-65.
- Gulam Razul, S., Fitzgerald, W.J. and Andrieu, C., 2003. Bayesian model selection and
- parameter estimation of nuclear emission spectra using RJMCMC. Nucl. Instrum.
- Meth. Phys., 497: 492-510.
- Hatherly, P.J., Urosevic, M., Lambourne, A. and Evans, B.J., 1994. A simple approach to
- calculating refraction statics corrections. Geophysics, 59: 156-160.
- Hu, Y., Jiang, T., Shen, A., Li, W., Wang, X. and Hu, J., 2007. A background
- elimination method based on wavelet transform for Raman spectra. Chemometr.
- Intell. Lab. Syst., 85: 94-101.
- Kneen, M.A. and Annegarn, H.J., 1996. Algorithm for fitting XRF, SEM and PIXE X-
- ray spectra backgrounds. Nucl. Instr. Meth. Phys. Res. Sect. B.: 209-213.
- Kutyniok, G., 2014. Geometric separation by single-pass alternating thresholding. Appl.
- Computat. Harmon. Analys., 36: 23-50.
- Laeven, J.M. and Smit, H.C., 1985. Optimal peak area determination in the presence of
- noise. Anal. Chim. Acta, 176: 77-104. doi.org/10.1016/S0003-2670(00)8 1636-0.
- Liu, Y., Cai, W. and Shao, X., 2013. Intelligent background correction using an adaptive
- lifting wavelet. Chemometr. Intell. Lab. Syst., 25: 11-17.
- Mazet, V., Carteret, C., Brie, D., Idier, J. and Humbert, B., 2005. Background removal
- from spectra by designing and minimizing a non-quadratic cost function.
- Chemometr. Intell. Lab. Syst., 76. 121-133
- McNulty, D.A. and MacFie, H.J.H., 1998. The effect of different baseline estimators on
- the limit of quantification in chromatography. J. Chemomet., 11: 1-11.
- Moore, A.W. and Jorgenson, J.W., 1993. Median filtering for removal of low-frequency
- background drift. Analyt. Chem., 65: 188-191.
- Ning, X., Selesnick, I. and Duval, L., 2014. Chromatogram baseline estimation and
- denoising using sparsity (BEADS). Chemometr. Intell. Lab. Syst., 139: 156-167.
- Pan, L., Liu, Y., Zheng, H., Zhao, Y. and Guo, Q., 2019. First-break residual static
- corrections applied in the southern part of Anjihai area. Geophys. Prosp., 54:
- 274-279.
- Rakheja, P. and Vig, R., 2016. Image denoising using combination of median filtering
- and wavelet transform. Int. J. Comput. Appl., 141(9).
- Ronen, J. and Claerbout, J.F., 1985. Surface-consistent residual statics estimation by
- stack-power maximization. Geophysics, 50: 2759-2767.
- de Rooi, J.J. and Eilers, P.H.C., 2012. Mixture models for baseline estimation.
- Chemometr. Intell. Lab. Syst., 117: 56-60.
- Ruckstuhl, A.F., Jacobson, M.P., Field, R.W. and Dodd, J.A., 2001. Baseline subtraction
- using robust local regression estimation. J. Quantit. Spectrosc. Radiat. Transf.,
- 68: 179-193.
- Smite, H.C. and Steigstra, H., 1988. Noise and detection limits in signal-integrating
- analytical methods. In: Currie, L.A. (Ed.), Detection in Analytical Chemistry:
- Importance, Theory, and Practice. ACS Symposium Series, American Chemical
- Soc.: 126-148. DOI: 10.1021/bk-1988-0361.ch007.
- Wiggins, R.A., Larner, K.L. and Wisecup, R.D., 1976. Residual statics analysis as a
- general linear inverse problem. Geophysics, 41: 922-938.
- Zhang, Z.M., Chen, S. and Liang, Y.Z., 2010. Baseline correction using adaptive
- iteratively reweighted penalized least squares. The Analyst, 135: 1138-1146.
- DOI: 10.1039/b922045c.
- Zhao, J., Li, J. and Cheng, J., 2019. Seismic gathers residual static correction based on
- matching pursuit algorithm. Expanded Abstr., 89th Ann. Internat. SEG Mtg., San
- Antonio: 2918-2922.
- Zhou, Q., Cao, L. and Chen, A., 2018. Residual static corrections with the niche genetic
- algorithm based on Poisson disk sampling. Geophys. Prosp., 53: 896-902.
- DOI: 10.13810/j.cnki. ISSN. 1000-72 10.2018.05.002