Seismic random noise attenuation using multi-scale sparse dictionary learning

Fang, J.W., Zhang, L., Zhou, H., Liu, Z.D., Wang, B. and Chen, W.J., 2022. Seismic random noise attenuation using multi-scale sparse dictionary learning. Journal of Seismic Exploration, 31: 177-202. Seismic data contain random noise, which affects data processing and interpretation and possibly limits the use of seismic data in parameter building and attribute prediction. To effectively remove such noise, we develop a denoising workflow based on multi-scale sparse dictionary learning. The multi-scale sparse dictionary learning method decreases the complexity of data by two approaches. One is seismic data-sparse representation from the data domain to the wavelet domain by wavelet bases. The other is denoising by sparse dictionary learning in a certain frequency band without the noise effect from other frequency bands. Meanwhile, the wavelet transform can also reduce the dimension of the data, which ensures the computational efficiency of the proposed method. After analyzing the effects of sparse dictionary learning parameters on seismic data denoising, we test the proposed method on two synthetic and two field datasets. We learn from the examples that our approach can effectively recover signals from simulated and real noisy data, as well as time-variant noisy data. Compared with the sparse dictionary learning, K-singular value decomposition dictionary learning, and double-sparsity dictionary (DSD), our method can obtain the best-denoised result with less effective signals leaking in noise sections.
- Aharon, M., Elad, M. and Bruckstein, A., 2006. K-SVD: An algorithm for designing
- over-complete dictionaries for sparse representation. IEEE Transact. Signal Process.,
- 54: 4311-4322.
- Bao, C., Ji, H. and Shen, Z., 2015. Convergence analysis for iterative data-driven tight
- frame construction scheme. Appl. Computat. Harmon. Analys., 38: 510-523.
- Beckouche, S. and Ma, J., 2014. Simultaneous dictionary learning and denoising for
- seismic data. Geophysics, 79(3): A27-A31.
- Bednar, J.B., 1983. Applications of median filtering to deconvolution, pulse estimation,
- and statistical editing of seismic data. Geophysics, 48: 1598-1610.
- Cai, J.F., Ji, H., Shen, Z. and Ye, G.B., 2014. Data-driven tight frame construction and
- image denoising. Appl. Computat. Harmon. Analys., 37: 89-105.
- Chen, S.S., Donoho, D.L. and Saunders, M.A., 2001. Atomic decomposition by basis
- pursuit. SIAM review, 43: 129-159.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
- seismic data. Geophys. J. Internat., 209: 21-31.
- Chen, Y., Ma, J. and Fomel, S., 2016. Double sparsity dictionary for seismic noise
- attenuation. Geophysics, 81(2): V103-V116.
- Daubechies, I., 1992. Ten lectures on wavelets. CBMS-NSF Regional Conference Series
- in Applied Mathematics, 61. SIAM Publications, Philadelphia.
- Daubechies, I, Han, B., Ron, A. and Shen, Z., 2003. Framelets: MRA-based
- constructions of wavelet frames. Appl. Computat. Harmon. Analys., 14: 1-46.
- Donoho D.L., 1995. Denoising by soft-thresholding. IEEE Transact. Informat. Theory,
- 41: 613-627.
- Fomel, S., Sava, P., Vlad, IL, Liu, Y. and Bashkardin, V., 2013. Madagascar:
- Open-source software project for multidimensional data analysis and reproducible
- computational experiments. J. Open Res. Softw., 1, e8.
- Feng, Z., 2021. Seismic random noise attenuation using effective and efficient dictionary
- learning. J. Appl. Geophys., 104258.
- Hennenfent, G. and Herrmann, F.J., 2006. Seismic denoising with nonuniformly sampled
- curvelets. Comput. Sci. Engineer., 8(3): 16-25.
- Ioup, J.W. and Ioup, G.E., 1998. Noise removal and compression using a wavelet
- transform. Expanded Abstr., 68th Ann. Internat. SEG Mtg. New Orleans:
- 1076-1079.
- Jawerth, B. and Sweldens, W., 1994. An overview of wavelet based multiresolution
- analyses. SIAM review, 36: 377-412.
- Liang, J., Ma, J. and Zhang, X., 2014. Seismic data restoration via data-driven tight
- frame. Geophysics, 79(3): V65-V74.
- Liu, C., Song, C. and Lu, Q., 2017. Random noise de-noising and direct wave
- eliminating based on SVD method for ground penetrating radar signals. J. Appl.
- Geophys., 144: 125-133.
- Lopes, M.E., 2016. Unknown sparsity in compressed sensing: Denoising and inference.
- IEEE Transact. Informat. Theory, 62: 5145-5166.
- Lv, H. and Bai, M., 2018. Learning dictionary in the approximately flattened structure
- domain. J. Appl. Geophys., 159: 522-531.
- Mallat, S., 1999. A Wavelet Tour of Signal Processing. Elsevier Science Publishers,
- Amsterdam.
- Margrave, G.F., 1998. Theory of nonstationary linear filtering in the Fourier domain with
- application to time-variant filtering. Geophysics, 63: 244-259.
- Miao, X. and Cheadle, S., 1998. Noise attenuation with wavelet transforms. Expanded
- Abstr., 68th Ann. Internat. SEG Mtg., New Orleans: 1072-1075.
- Naghizadeh, M. and Sacchi, M.D., 2010. Beyond alias hierarchical scale curvelet
- interpolation of regularly and irregularly sampled seismic data. Geophysics, 75(6):
- WB189-WB202.
- Neelamani, R., Baumstein, A. and Ross, W.S., 2010. Adaptive subtraction using
- complex-valued curvelet transforms. Geophysics, 75(4): V51-V60.
- Ophir, B., Lustig, M. and Elad, M., 2011. Multi-scale dictionary learning using wavelets.
- IEEE J. Select. Topics Sign. Process., 5: 1014-1024.
- Rubinstein, R., Zibulevsky, M. and Elad, M., 2009. Double sparsity: learning sparse
- dictionaries for sparse signal approximation. IEEE Transact. Signal Process., 58:
- 1553-1564.
- Schnemann, P.H., 1966. A generalized solution of the orthogonal procrustes problem.
- Psychometrika, 31: 1-10.
- Sezer, O.G., Guleryuz, O.G. and Altunbasak, Y., 2015. Approximation and compression
- with sparse orthonormal transforms. IEEE Transact. Image Process., 24: 2328-2343.
- Strang, G. and Nguyen, T., 1996. Wavelets and Filter Banks, Wellesley-Cambridge
- Press, New York.
- Tropp, J.-A. and Gilbert, A.C., 2007. Signal recovery from random measurements via
- orthogonal matching pursuit. IEEE Transact. Informat. Theory, 53: 4655-4666.
- Turquais, P., Asgedom, E.G. and Sdéllner, W., 2017. A method of combining
- coherence-constrained sparse coding and dictionary learning for denoising.
- Geophysics, 82(3): V137-V148.
- Wang, D., Saab, R., Yilmaz, O. and Herrmann, F.J., 2008. Bayesian wavefield separation
- by transform-domain sparsity promotion. Geophysics, 73(5): A33-A38.
- Yilmaz, O. and Donherty, S., 2001. Seismic Data Analysis. SEG, Tulsa, OK.
- Yu, S., Ma, J. and Osher, S., 2016. Monte Carlo data-driven tight frame for seismic data
- recovery. Geophysics, 81(4): V327-V340.
- Yu, S., Ma, J., Zhang, X. and Sacchi, M.D., 2015. Interpolation and denoising of
- high-dimensional seismic data by learning a tight frame. Geophysics, 80(5):
- V119-V132.
- Yuan, Y.O. and Simons, F.J., 2014. Multi-scale adjoint waveform-difference tomography
- using wavelets. Geophysics, 79(3): WA79-WA95.
- Zhan, R. and Dong, B., 2016. CT image reconstruction by spatial-Radon domain
- data-driven tight frame regularization. SIAM J. Imaging Sci., 9: 1063-1083.
- Zhang, R. and Ulrych, T.J., 2003. Physical wavelet frame denoising. Geophysics, 68:
- 225-231.
- Zhang, Q., Wang, H., Chen, W. and Huang, G., 2020. A robust method for random noise
- suppression based on the Radon transform. J. Appl. Geophys., 104183.
- Zhu, L., Liu, E. and Mcclellan, J.H., 2015. Seismic data denoising through multiscale
- and sparsity-promoting dictionary learning. Geophysics, 80(6): WD45-WD57.
- Zu, S., Zhou, H., Wu, R., Jiang, M. and Chen, Y., 2019. Dictionary learning based on dip
- patch selection training for random noise attenuation. Geophysics, 84(3):
- V169-V183.
- Zu, S., Zhou, H., Wu, R., Mao, W. and Chen, Y., 2018. Hybrid-sparsity constrained
- dictionary learning for iterative deblending of extremely noisy simultaneous-source
- data. IEEE Transact. Geosci. Remote Sens., 57: 2249-2262.