ARTICLE

Space-time-domain Gaussian beam migration in VTI media based on the upward ray tracing and its application in land field data

DONGLIN ZHANG1,2 JIANPING HUANG1,2 JIDONG YANG1,2 BIN ZHOU3 JIANFENG ZHANG3 QINGYANG LI4
Show Less
1 School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
2 Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, P.R. China.,
3 Geophysical China Oilfield Services Limited, Tianjing 300459, P.R. China.,
4 Geophysical Exploration Research Institute of Zhongyuan Oilfield Company, Puyang, 457001, P.R. China.,
JSE 2022, 31(6), 545–562;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhang, D.L., Huang, J.P., Yang, J.D., Zhou, B., Zhang, J.F. and Li, Q.Y., 2022. Space-time-domain Gaussian beam migration in VTI media based on the upward ray tracing and its application in land field data. Journal of Seismic Exploration, 31: 545-562. Gaussian beam migration (GBM) method is an efficient and adaptable imaging tool, but the traditional GBM method may produce some false imaging in some layers due to the inaccurate ray tracing in the construction of reverse wavefields. Firstly, the reverse wavefields are constructed by using the upward ray tracing strategy. Then, we derive the space-time-domain GBM formula in acoustic medium based on the cross-correlation imaging condition. Finally, taking in account the anisotropic characteristics, we use the anisotropic ray tracing theory to implement a space-time-domain GBM approach in VTI media. After testing for the anisotropic graben and diffractor models as well as a land field data, compared with the imaging results in space-time-domain isotropic GBM, we get the following conclusions: 1) The diffraction energy of the graben model is more convergent in the low layers; 2) Our method can clearly image the diffracting points of the diffractor model; 3) For the field data, the image resolution is obviously improved, the fault planes are clearer, and the image amplitude in the left part of the anticline is more balanced.

Keywords
Gaussian beam migration
upward ray tracing
space-time-domain
VTI
anisotropic
References
  1. Alkhalifah, T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics,
  2. 60: 1474-1484.
  3. Bai, M., Chen, X., Wu, J., Liu, G., Chen, Y., Chen, H. and Li, Q., 2016. Q-compensated
  4. migration by Gaussian beam summation method. J. Geophys. Engineer., 13: 35-
  5. Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media.
  6. _ Geophys. J. Internat., 29: 1-13.
  7. Cerveny, V., Popov, M.M. and PSenéik, I., 1982. Computation of wave fields in
  8. inhomogeneous media-Gaussian beam approach. Geophys. J. Internat., 70: 109-
  9. Gray, S.H. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration.
  10. Geophysics, 74(2): S11-S23.
  11. Han, J., Wang, Y., Xing, Z. and Lu, J., 2014. Gaussian beam prestack depth migration of
  12. converted wave in TI media. J. Appl. Geophys., 109: 7-14.
  13. Han, J., Wang, Y., Yu, C. and Chen, P., 2017. Angle-domain common-image gathers
  14. from anisotropic Gaussian beam migration and its application to anisotropy-induced
  15. imaging errors analysis. J. Earth Syst. Sci., 126: 1-9.
  16. Han, J., Li, Q., Gu, B., Yan, J. and Zhang, H., 2020. 2D anisotropic multicomponent
  17. Gaussian-beam migration under complex surface conditions. Geophysics, 85(2):
  18. $89-S102.
  19. Han, J., Liu, Z., Wang, Y., Yan, J. and Gu, B., 2021. 2D anisotropic nonslant stack beam
  20. migration for multicomponent seismic data. Arab. J. Geosci., 14(13): 1-9.
  21. Hanyga, A., 1986. Gaussian beams in anisotropic elastic media. Geophys. J. Internat.,
  22. 85: 473-504.
  23. Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
  24. Hill, N.R., 2001. Prestack Gaussian-beam depth migration. Geophysics, 66: 1240-1250.
  25. Hu, Z.D., Li, Q.D., Han, L.H., Liu, W., Huang, J.P., Yang, J.D. and Li, Z.C., 2020.
  26. Elastic space-time Gaussian beam method for seismic depth imaging. Chin. J.
  27. Geophys., 63: 652-665 (in Chinese).
  28. Huang, J., Yang, J., Liao, W., Wang, X. and Li, Z., 2016. Common-shot Fresnel beam
  29. migration based on wave-field approximation in effective vicinity under complex
  30. topographic conditions. Geophys. Prosp., 64: 554-570.
  31. Huang, J., Yuan, M., Zhang, Q., Jia, L., Li, Z., Li, J. and Zhao, S., 2017. Reverse time
  32. migration with elastodynamic Gaussian beams. J. Earth Sci., 28: 695-702.
  33. Katchalov, A.P. and Popov, M.M., 1988. Gaussian beam methods and theoretical
  34. seismograms. Geophys. J. Internat., 93: 465-475.
  35. Li, H., Wang, H.Z., Feng, B., Hu. Y. and Zhang, C., 2014. Efficient pre-stack depth
  36. migration method using characteristic Gaussian packets. Chin. J. Geophys., 57:
  37. 2258-2268 (in Chinese).
  38. Li, Z.C., Liu, Q., Han, W.G., Zhang, M., Wang, T.Q., Xiao, J.E. and Wu, J.H., 2018.
  39. Angle domain converted wave Gaussian beam migration in VTI media. Chin. J.
  40. Geophys., 61: 1471-1481 (in Chinese).
  41. Nowack, R.L., 2011. Dynamically focused Gaussian beams for seismic imaging.
  42. Internat. J. Geophys., 2011: 1-8.
  43. Popov, M.M., 1982. A new method of computation of wave fields using Gaussian
  44. beams. Wave Motion, 4: 85-97.
  45. Popov, M.M., Semtchenok, N.M., Popov, P.M. and Verdel, A.R., 2010. Depth migration
  46. by the Gaussian beam summation method. Geophysics, 75(2): $81-S93.
  47. Protasov, M.I. and Tcheverda, V.A., 2012. True amplitude elastic Gaussian beam
  48. imaging of multicomponent walkaway vertical seismic profiling data. Geophys.
  49. Prosp., 60: 1030-1042.
  50. Yang, J.D., Huang, J.P., Wang, X. and Li, Z.C., 2015. An amplitude-preserved adaptive
  51. focused beam seismic migration method. Petrol. Sci., 12: 417-427.
  52. Yang, J. and Zhu, H., 2018. A practical data-driven optimization strategy for Gaussian
  53. beam migration. Geophysics, 83(1): S81-S92.
  54. Yuan, M., Huang, J., Liao, W. and Jiang, F., 2017. Least-squares Gaussian beam
  55. migration. J. Geophys. Engineer., 14: 184-196.
  56. Yue,, Y.B., Li, Z.C., Zhang, P., Zhou, X.F. and Qin, N., 2010. Prestack Gaussian beam
  57. depth migration under complex surface conditions. Appl. Geophys., 7: 143-148.
  58. Yue, Y.B., Li, Z.C., Qian, Z.P., Zhang, J.L., Sun, P.Y. and Ma, G.K., 2012.
  59. Amplitude-preserved Gaussian beam migration under complex topographic
  60. conditions. Chin. J. Geophys., 55: 1376-1383 (in Chinese).
  61. Yue, Y., Liu, Y., Li, Y. and Shi, Y., 2021. Least-squares Gaussian beam migration in
  62. _ _ viscoacoustic media. Geophysics, 86(1): S17-S28.
  63. Zaéek, K., 2006. Decomposition of the wave field into optimized Gaussian packets.
  64. Studia Geophys. Geodaet., 50: 367-380.
  65. Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration in
  66. anisotropic media. Geophysics, 72(3): $133-S138.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing