Space-time-domain Gaussian beam migration in VTI media based on the upward ray tracing and its application in land field data

Zhang, D.L., Huang, J.P., Yang, J.D., Zhou, B., Zhang, J.F. and Li, Q.Y., 2022. Space-time-domain Gaussian beam migration in VTI media based on the upward ray tracing and its application in land field data. Journal of Seismic Exploration, 31: 545-562. Gaussian beam migration (GBM) method is an efficient and adaptable imaging tool, but the traditional GBM method may produce some false imaging in some layers due to the inaccurate ray tracing in the construction of reverse wavefields. Firstly, the reverse wavefields are constructed by using the upward ray tracing strategy. Then, we derive the space-time-domain GBM formula in acoustic medium based on the cross-correlation imaging condition. Finally, taking in account the anisotropic characteristics, we use the anisotropic ray tracing theory to implement a space-time-domain GBM approach in VTI media. After testing for the anisotropic graben and diffractor models as well as a land field data, compared with the imaging results in space-time-domain isotropic GBM, we get the following conclusions: 1) The diffraction energy of the graben model is more convergent in the low layers; 2) Our method can clearly image the diffracting points of the diffractor model; 3) For the field data, the image resolution is obviously improved, the fault planes are clearer, and the image amplitude in the left part of the anticline is more balanced.
- Alkhalifah, T., 1995. Gaussian beam depth migration for anisotropic media. Geophysics,
- 60: 1474-1484.
- Bai, M., Chen, X., Wu, J., Liu, G., Chen, Y., Chen, H. and Li, Q., 2016. Q-compensated
- migration by Gaussian beam summation method. J. Geophys. Engineer., 13: 35-
- Cerveny, V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media.
- _ Geophys. J. Internat., 29: 1-13.
- Cerveny, V., Popov, M.M. and PSenéik, I., 1982. Computation of wave fields in
- inhomogeneous media-Gaussian beam approach. Geophys. J. Internat., 70: 109-
- Gray, S.H. and Bleistein, N., 2009. True-amplitude Gaussian-beam migration.
- Geophysics, 74(2): S11-S23.
- Han, J., Wang, Y., Xing, Z. and Lu, J., 2014. Gaussian beam prestack depth migration of
- converted wave in TI media. J. Appl. Geophys., 109: 7-14.
- Han, J., Wang, Y., Yu, C. and Chen, P., 2017. Angle-domain common-image gathers
- from anisotropic Gaussian beam migration and its application to anisotropy-induced
- imaging errors analysis. J. Earth Syst. Sci., 126: 1-9.
- Han, J., Li, Q., Gu, B., Yan, J. and Zhang, H., 2020. 2D anisotropic multicomponent
- Gaussian-beam migration under complex surface conditions. Geophysics, 85(2):
- $89-S102.
- Han, J., Liu, Z., Wang, Y., Yan, J. and Gu, B., 2021. 2D anisotropic nonslant stack beam
- migration for multicomponent seismic data. Arab. J. Geosci., 14(13): 1-9.
- Hanyga, A., 1986. Gaussian beams in anisotropic elastic media. Geophys. J. Internat.,
- 85: 473-504.
- Hill, N.R., 1990. Gaussian beam migration. Geophysics, 55: 1416-1428.
- Hill, N.R., 2001. Prestack Gaussian-beam depth migration. Geophysics, 66: 1240-1250.
- Hu, Z.D., Li, Q.D., Han, L.H., Liu, W., Huang, J.P., Yang, J.D. and Li, Z.C., 2020.
- Elastic space-time Gaussian beam method for seismic depth imaging. Chin. J.
- Geophys., 63: 652-665 (in Chinese).
- Huang, J., Yang, J., Liao, W., Wang, X. and Li, Z., 2016. Common-shot Fresnel beam
- migration based on wave-field approximation in effective vicinity under complex
- topographic conditions. Geophys. Prosp., 64: 554-570.
- Huang, J., Yuan, M., Zhang, Q., Jia, L., Li, Z., Li, J. and Zhao, S., 2017. Reverse time
- migration with elastodynamic Gaussian beams. J. Earth Sci., 28: 695-702.
- Katchalov, A.P. and Popov, M.M., 1988. Gaussian beam methods and theoretical
- seismograms. Geophys. J. Internat., 93: 465-475.
- Li, H., Wang, H.Z., Feng, B., Hu. Y. and Zhang, C., 2014. Efficient pre-stack depth
- migration method using characteristic Gaussian packets. Chin. J. Geophys., 57:
- 2258-2268 (in Chinese).
- Li, Z.C., Liu, Q., Han, W.G., Zhang, M., Wang, T.Q., Xiao, J.E. and Wu, J.H., 2018.
- Angle domain converted wave Gaussian beam migration in VTI media. Chin. J.
- Geophys., 61: 1471-1481 (in Chinese).
- Nowack, R.L., 2011. Dynamically focused Gaussian beams for seismic imaging.
- Internat. J. Geophys., 2011: 1-8.
- Popov, M.M., 1982. A new method of computation of wave fields using Gaussian
- beams. Wave Motion, 4: 85-97.
- Popov, M.M., Semtchenok, N.M., Popov, P.M. and Verdel, A.R., 2010. Depth migration
- by the Gaussian beam summation method. Geophysics, 75(2): $81-S93.
- Protasov, M.I. and Tcheverda, V.A., 2012. True amplitude elastic Gaussian beam
- imaging of multicomponent walkaway vertical seismic profiling data. Geophys.
- Prosp., 60: 1030-1042.
- Yang, J.D., Huang, J.P., Wang, X. and Li, Z.C., 2015. An amplitude-preserved adaptive
- focused beam seismic migration method. Petrol. Sci., 12: 417-427.
- Yang, J. and Zhu, H., 2018. A practical data-driven optimization strategy for Gaussian
- beam migration. Geophysics, 83(1): S81-S92.
- Yuan, M., Huang, J., Liao, W. and Jiang, F., 2017. Least-squares Gaussian beam
- migration. J. Geophys. Engineer., 14: 184-196.
- Yue,, Y.B., Li, Z.C., Zhang, P., Zhou, X.F. and Qin, N., 2010. Prestack Gaussian beam
- depth migration under complex surface conditions. Appl. Geophys., 7: 143-148.
- Yue, Y.B., Li, Z.C., Qian, Z.P., Zhang, J.L., Sun, P.Y. and Ma, G.K., 2012.
- Amplitude-preserved Gaussian beam migration under complex topographic
- conditions. Chin. J. Geophys., 55: 1376-1383 (in Chinese).
- Yue, Y., Liu, Y., Li, Y. and Shi, Y., 2021. Least-squares Gaussian beam migration in
- _ _ viscoacoustic media. Geophysics, 86(1): S17-S28.
- Zaéek, K., 2006. Decomposition of the wave field into optimized Gaussian packets.
- Studia Geophys. Geodaet., 50: 367-380.
- Zhu, T., Gray, S.H. and Wang, D., 2007. Prestack Gaussian-beam depth migration in
- anisotropic media. Geophysics, 72(3): $133-S138.