Cite this article
1
Download
7
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

An integrated approach to the analysis of amplitude variation with offset in Vertical Transversely Isotropic (VTI) media using inclusion-based rock physics modeling

HAMED GHANBARNEJAD-MOGHANLOO MOHAMMAD ALI RIAHI
Show Less
Institute of Geophysics, University of Tehran, P.O. Box 14115-6466, Tehran, Iran,
JSE 2023, 32(1), 67–88;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

For accurate lithology and fluid content characterization from the amplitude with offset analysis in hydrocarbon fields, understanding the shale anisotropy effect on reflectivity is essential. Shale-rich sedimentary deposits are common components of sedimentary sequences with strong anisotropic properties. The main objective of this study is to perform anisotropic AVO analysis in vertical transversely isotropic (VTI) media at the top of a shale/gas sand interface, utilizing inclusion-based rock physics modeling in the Burgan formation in an Iranian oilfield. Results have shown that anisotropic AVO analysis shows Class I AVO which is indicative of the presence of hydrocarbon, whereas isotropic AVO analysis has shown no trend of any AVO classes. This study also investigates the application of a rock physics template in the shalegas- sand interface in the Burgan formation. Without rock physics modeling, gas-sand can not be detected using the P- to S-wave velocity ratio against an acoustic impedance cross- plot. After rock physics modeling, gas sand has been discriminated from shale with a low P- to S-wave velocity ratio, low acoustic impedance, and high effective porosity in this cross-plot.

Keywords
anisotropic AVO analysis
shale
inclusion-based rock physics
gas-sand
modeling
Vertical Transverse Isotropic (VTI) media
Burgan formation
References
  1. Abedi, M.M., Riahi, M.A. and Stovas, A.. 2019. Three-parameter normal moveout
  2. correction in layered anisotropic media: A stretch-free approach. Geophysics,
  3. 84(3): C129-C142.
  4. Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its
  5. proforeland evolution. Am. J. Sci., 304: 1-20.
  6. Asaka, M., 2018. Anisotropic AVO: Implications for reservoir characterization. The
  7. Leading Edge, 37: 916-923.
  8. Avseth, P.A. and Odegaard, E.. 2004. Well log and seismic data analysis using rock
  9. physics templates. First break, 22(10): 37-43.
  10. Bakulin, A., 2003. Intrinsic and layer-induced vertical transverse isotropy.
  11. Geophysics, 68: 1708-1713.
  12. Bala, M., Cichy, A. and Wasilewska-Blaszczyk, M., 2019. Attempts to calculate the
  13. pseudo-anisotropy of elastic parameters of shales gas formations based on well
  14. logging data and their geostatistical analysis. Geol., Geophys., Environ., 45: 5-20.
  15. Carcione, J.M. and Avseth, P., 2015. Rock-physics templates for clay-rich source rocks.
  16. Geophysics, 80(5): D481-D500.
  17. Chi, X.G. and Han, D.H., 2009. Lithology and fluid differentiation using a rock physics
  18. template. The Leading Edge, 28: 60-65.
  19. Chopra, S. and Castagna, J.P., 2014. Investigations in Geophysics - AVO. SEG, Tulsa,
  20. OK.
  21. Davies, R.B., Casey, D.M., Horbury, A.D., Sharland, P.R. and Simmons, M.D., 2002.
  22. Early to mid-Cretaceous mixed carbonate-clastic shelfal systems: examples,
  23. issues and models from the Arabian Plate. GeoArabia, 7: 541-598.
  24. Dong, N., Huo, Z.Z., Sun, Z.D., Liu, Z.S. and Sun, Y.Y., 2014. An investigation of a new
  25. rock physics model for shale. Chin. J. Geophys.. 57: 1990-1998.
  26. Ehirim, C.N. and Chikezie, N.O., 2017. The effect of anisotropy on amplitude versus
  27. offset (AVO) synthetic modeling in Derby field southeastern Niger Delta. J.
  28. Petrol. Explor. Product. Technol.. 7: 667-672.
  29. Gassmann, F., 1951. Uber die Elastizitit Poréser Medien. Vierteljahrsschrift der
  30. Naturforschenden Gesellschaft in Ziirich, 96: 1-23.
  31. Geertsma, J. and Smit, D.C., 1961. Some aspects of elastic wave propagation in fluid-
  32. saturated porous solids. Geophysics, 26: 169-181.
  33. Ghanbarnejad-Moghanloo, H., and Riahi, M.A., 2022. Application of prestack Poisson
  34. dampening factor and Poisson impedance inversion in sand quality and lithofacies
  35. discrimination. Arab. J. Geosci., 15: 1-10.
  36. Grana, D., Mukerji, T. and Doyen, P., 2021. Seismic Reservoir Modeling: Theory,
  37. Examples, and Algorithms. John Wiley & Sons, New York.
  38. Grechka, V.I., 2009. Applications of Seismic Anisotropy in the Oil and Gas Industry.
  39. EAGE, Houten, Netherlands.
  40. Grechka, V., Zhang, L. and Rector III, J.W., 2004. Shear waves in acoustic anisotropic
  41. media. Geophysics, 69: 576-582.
  42. Guo, Z., Li, X.Y., Liu, C., Feng, X. and Shen, Y., 2013. A shale rock physics model for
  43. analysis of brittleness index, mineralogy, and porosity in the Barnett Shale. J.
  44. Geophvs. Engineer., 10(2): 025006.
  45. Hashin, Z. and Shtrikman, S., 1963. A variational approach to the elastic behavior of
  46. multiphase materials. J. Mechan. Phys. Solids, 11: 127-140.
  47. Johnston, J.E. and Christensen, N.I.. 1995. Seismic anisotropy of shales. J. Geophys.
  48. Res.: Solid Earth, 100(B4): 5991-6003.
  49. Khadeeva, Y. and Vernik, L., 2014. Rock-physics model for unconventional shales. The
  50. Leading Edge. 33: 318-322.
  51. Kim, K.Y., Wrolstad, K.H. and Aminzadeh, F., 1993. Effects of transverse isotropy on P-
  52. wave AVO for gas sands. Geophysics, 58: 883-888.
  53. Kordi, M., 2019. Sedimentary basin analysis of the Neo-Tethys and its hydrocarbon
  54. systems in the Southern Zagros fold-thrust belt and foreland basin. Earth-Sci.
  55. Rev.. 191: 1-11.
  56. Kuster, G.T. and Tokséz, M.N.. 1974. Velocity and attenuation of seismic waves in two-
  57. phase media: Part I. Theoretical formulations. Geophysics, 39: 587-606.
  58. Li, Y.. 2006. An empirical method for estimation of anisotropic parameters in clastic
  59. rocks. The Leading Edge, 25: 706-711.
  60. Mavko, G., Mukerji, T. and Dvorkin, J., 2020. The Rock Physics Handbook. Cambridge
  61. University Press, Cambridge.
  62. Moghanloo, H.G., Riahi, M.A. and Bagheri, M.. 2018. Application of simultaneous
  63. prestack inversion in reservoir facies identification. J. Geophys. Engineer., 15:
  64. 1376-1388.
  65. Mur, A. and Vernik, L., 2019. Testing popular rock-physics models. The Leading Edge,
  66. 38: 350-357.
  67. Nye, J.F.. 1985. Physical Properties of Crystals: Their Representation by Tensors and
  68. Matrices. Oxford University Press, Oxford.
  69. Pan, X.P., Zhang, G.Z. and Chen, J.J., 2020.. The construction of shale rock physics
  70. model and brittleness prediction for high-porosity shale gas-bearing
  71. reservoir. Petrol. Sci.. 17: 658-670.
  72. Prioul, R., Bakulin, A. and Bakulin, V., 2004. Nonlinear rock physics model for
  73. estimation of 3D subsurface stress in anisotropic formations: Theory and
  74. laboratory verification. Geophysics, 69: 415-425.
  75. Riiger, A., 2002. Reflection coefficients and azimuthal AVO analysis in anisotropic
  76. media. Expanded Abstr., 72nd Ann. Internat. SEG Mtg., Salt Lake City.
  77. Ruiz. F. and Cheng, A., 2010. A rock physics model for tight gas sand. The Leading
  78. Edge, 29: 1484-1489.
  79. Sayers, C.M. and Dasgupta, S.. 2019. A predictive anisotropic rock-physics model for
  80. estimating elastic rock properties of unconventional shale reservoirs. The Leading
  81. Edge, 38: 358-365.
  82. Simm, R. and Bacon, M., 2014. Seismic Amplitude: An Interpreter's Handbook.
  83. Cambridge University Press, Cambridge.
  84. Smith, T.M., Sondergeld, C.H. and Rai, C.S., 2003. Gassmann fluid substitutions: A
  85. tutorial. Geophysics, 68: 430-440.
  86. Strohmenger, C.J.. Mitchell. J.C.. Feldman, H.R.. Lehmann, P.J.. Broomhall, R.W..
  87. Patterson, P.E. and Al-Aimi, N., 2006. Sequence stratigraphy and reservoir
  88. architecture of the Burgan and Mauddud formations (Lower Cretaceous), Kuwait.
  89. In: Harris, P.M. and Weber, L.J., Eds., Giant Hydrocarbon Reservoirs of the
  90. World: From Rocks to Reservoir Characterization and Modeling, AAPG Memoir
  91. 88/SEPM Special Publication, 213-245.
  92. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  93. Thomsen, L., 2012. On the use of isotropic parameters 4, E, v to understand anisotropic
  94. shale behavior. Istanbul Internat. Geophys. Conf. (pp. 1-4). SEG - Chamber of
  95. Geophys. Engineers Turkey.
  96. Tsvankin, I., Gaiser, J., Grechka, V., Van Der Baan, M. and Thomsen, L., 2010. Seismic
  97. anisotropy in exploration and reservoir characterization: An overview.
  98. Geophysics, 75(5): A15-A29.
  99. Van Buchem, F.S., Baghbani, D., Bulot, L.G., Caron, M., Gaumet, F., Hosseini, A. and
  100. Vincent, B., 2010. Barremian-Lower Albian sequence stratigraphy of southwest
  101. Tran (Gadvan. Darivan. and Kazhdumi formations) and its comparison with
  102. Oman, Qatar, and United Arab Emirates. GeoArabia Special Publicat. 4: 503-548.
  103. Vernik, L., 2016. Seismic Petrophvsics in Quantitative Interpretation. SEG, Tulsa, OK.
  104. Vernik, L. and Kachanov, M.. 2010. Modeling elastic properties of siliciclastic rocks.
  105. Geophysics, 75(6): E171-E182.
  106. Vernik, L. and Milovac, J., 2011. Rock physics of organic shales. The Leading
  107. Edge, 30: 318-323.
  108. Wawrzyniak-Guz, K., 2019. Rock physics modeling for determination of effective elastic
  109. properties of the lower Paleozoic shale formation, North Poland. Acta
  110. Geophys., 67: 1967-1989.
  111. Xu, S. and Payne, M.A., 2009. Modeling elastic properties in carbonate rocks. The
  112. Leading Edge, 28: 66-74.
  113. Xu, S. and White, R.E., 1995. A new velocity model for clay-sand mixtures. 1. Geophys.
  114. Prosp., 43: 91-118.
  115. Yan, F. and Han, D.H., 2020. Effect of seismic anisotropy on AVO interpretation: A
  116. Monte Carlo simulation study. Expanded Abstr., 90th Ann. Internat. SEG Mtg.,
  117. Houston: 280-284.
  118. Zhu, Y., Xu, S., Payne. M., Martinez, A., Liu, E., Harris, C. and Bandyopadhyay. K.,
  119. Improved rock-phvsics model for shale gas reservoirs. Expanded Abstr.,
  120. 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing