AccScience Publishing / JSE / Article / DOI: 10.36922/JSE025190002
ARTICLE

Seismic prediction methods for evaluating in situ stress in tilted transversely isotropic and monoclinic media

Jun Cheng1 Yaojie Chen2* Zhensen Sun3
Show Less
1 Petroleum Development Center, Shengli Oilfield, Sinopec, Dongying, Shandong, China
2 Department of Geophysical Exploration, School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan, China
3 Nanhai East Petroleum Research Institute, Shenzhen Branch National Offshore Oil Corporation Ltd., Shenzhen, Guangdong, China
JSE 2025, 34(1), 60–80; https://doi.org/10.36922/JSE025190002
Submitted: 9 May 2025 | Revised: 1 August 2025 | Accepted: 1 August 2025 | Published: 15 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The formation of tectonic fractures is primarily influenced by stress distribution during the tectonic period. Therefore, in situ stress plays a crucial role in predicting fracture development zones. It significantly impacts the effectiveness of fractures by determining the size, orientation, and distribution pattern of fractures, thereby affecting stimulation results. Existing seismic methods for in situ stress prediction utilize seismic data to estimate stress parameters and calculate the horizontal stress difference ratio or the orthorhombic horizontal stress difference ratio (DHSR). These methods are based on the horizontal transverse isotropy or the orthorhombic anisotropy medium models. However, shale formations are often subject to tectonic movements that can rotate the symmetry axis of a transversely isotropic medium, leading to the formation of a tilted transversely isotropic (TTI) medium or a monoclinic medium with an inclined symmetry plane. Based on the TTI and monoclinic medium assumptions, this paper proposes new formulas for calculating the DHSRs (tilted transverse isotropy DHSR and monoclinic DHSR). The formulas are further validated through sensitivity analyses. Finally, this study demonstrates the effectiveness of the in situ stress seismic prediction method, grounded in TTI, and monoclinic medium theory through model-based examples.

Keywords
In situ stress
Tilted transverse isotropy differential horizontal stress ratio
Monoclinic differential horizontal stress ratio
Funding
This research received no external funding.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Crampin S. The fracture criticality of crustal rocks. Geophys J Int. 1994;118(2):428-438. doi: 10.1111/j.1365-246X.1994.tb03974.x

 

  1. Yin XY, Cao DP, Wang BL, Zong ZY. Research progress on fluid identification method based on pre-stack seismic inversion. Oil Geophys Prospect. 2014;49(1):22-34. doi: 10.13810/j.cnki.issn.1000-7210.2014.01.002

 

  1. Du BY, Yang WY, Wang EL, Zhang GZ, Gao J. AVAZ inversion method for fracture media based on young’s modulus, poisson’s ratio and anisotropy gradient. Oil Geophys Prospect. 2015;54(2):218-225. doi: 10.3969/j.issn.1000-1441.2015.02.014

 

  1. Zhang GZ, Chen JJ, Chen HZ, Ma GZ, Li CC, Yin XY. Study on in-situ stress prediction method based on shale rock physics equivalent model. Chin J Geophys. 2015;58(6):2112-2122.

 

  1. Gray FD, Anderson PF, Logel J, Delbecq F, Schmidt D. Estimating In-Situ, Anisotropic, Principal Stresses from 3D Seismic. In: EAGE Conference and Exhibition; 2010.

 

  1. Gray FD, Anderson PF, Corp A, Logel J, Delbecq F, Schmidt D. Principle Stress Estimation in Shale Plays using 3D Seismic. Boca Raton: GeoCanada; 2010.

 

  1. Gray FD. Methods and Systems for Estimating Stress using Seismic Data. United States Patent Application no 20110182144A1; 2011.

 

  1. Gray FD, Logel J, Delbecq F, Schmidt D, Schmid R. Estimation of stress and geomechanical properties using 3D seismic data. First Break. 2012;30(3):59-68. doi: 10.3997/1365-2397.2011042

 

  1. Ruger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics. 1998;63(3):935-947. doi: 10.1190/1.1444405

 

  1. Ge ZJ, Li JY, Chen XH, Yu X, Wu JL. TTI medium fracture parameter inversion based on bayesian linear AVAZ. Chin J Geophys. 2018;61(7):3008-3018. doi: 10.6038/cjg2018L0703

 

  1. Ma N, Yin XY, Sun CY, Zong ZY. In-situ stress inversion method based on azimuthal seismic data. Chin J Geophys. 2018;61(2):697-706.

 

  1. Ma N, Yin XY, Sun CY, Zong ZY. Seismic prediction method for in-situ stress based on orthotropic medium theory. Chin J Geophys. 2017;60(12):4766-4775.

 

  1. Wang C. Research on Pre-Stack Seismic Evaluation Method for Fracturability of Shale Gas Reservoirs. Qingdao: China University of Petroleum (East China); 2018.

 

  1. Wang C, Song WQ, Lin YH, Zhang YY, Gao QJ, Wei XW. The prediction method of in-situ stress based on pre-stack anisotropic parameter inversion. Geophys Geochem Exploration. 2020;44(1):141-148.

 

  1. Li L, Zhang GZ. Estimation of fracture parameters and in-situ stress parameter based on extended azimuthal elastic impedance. Chin J Geophys. 2022;65(8):3172-3185.

 

  1. Wang ZY, Zhang YP, Yang PK, Li SJ. In situ stress field inversion based on regularization theory and its applications. Chin J Underground Space Eng. 2023;19(2):751-757.

 

  1. Bao T, Burghardt J. A Bayesian approach for in-situ stress prediction and uncertainty quantification for subsurface engineering. Rock Mech Rock Eng. 2022;55(8):4531-4548. doi: 10.1007/s00603-022-02857-0

 

  1. Feng Y, Gao K, Lacasse S. Bayesian partial pooling to reduce uncertainty in overcoring rock stress estimation. J Rock Mech Geotech Eng. 2024;16(4):1192-1201. doi: 10.1016/j.jrmge.2023.05.003

 

  1. Feng Y, Gao K, Mignan A, Li JW. Improving local mean stress estimation using Bayesian hierarchical modelling. Int J Rock Mech Min Sci. 2021;148:104924. doi: 10.1016/j.ijrmms.2021.104924

 

  1. Feng Y, Bozorgzadeh N, Harrison JP. Bayesian analysis for uncertainty quantification of in situ stress data. Int J Rock Mech Min Sci. 2020;134:104381. doi: 10.1016/j.ijrmms.2020.104381

 

  1. Moritz OZ, Oliver H. Bayesian quantification and reduction of uncertainties in 3D geomechanical-numerical models. J Geophys Res Solid Earth. 2023;128(1):1-23. doi: 10.1029/2022JB024855

 

  1. Tonon F, Amadei B, Pan E. Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory. Int J Rock Mech Min Sci. 2001;38(7):995-1027. doi: 10.1016/S1365-1609(01)00036-3

 

  1. Leslie JM, Lawton DC. Structural Imaging Below Dipping Anisotropic Layers: Predictions from Seismic Modeling. In: 66th Annual International Meeting, Expanded Abstracts. United States: SEG; 1996. p. 719-722.

 

  1. Behera L, Tsvankin I. Migration velocity analysis for tilted transversely isotropic media. Geophys Prospect. 2009;57:13-26. doi: 10.1111/j.1365-2478.2008.00732.x

 

  1. Tsvankin I. Moveout analysis for transversely isotropic media with a tilted symmetry axis. Geophys Prospect. 1997;45(3):479-512. doi: 10.1046/j.1365-2478.1997.380278.x

 

  1. Isaac JH, Lawton DC. A practical method for estimating effective parameters of anisotropy from reflection seismic data. Geophysics. 2004;69(3):681-689. doi: 10.1190/1.1759454

 

  1. Charles S, Mitchell DR, Holt RA, Lin JW, Mathewson J. Data-driven tomographic velocity analysis in tilted transversely isotropic media: A 3D case history from the Canadian foothills. Geophysics. 2008,73(5):261. doi: 10.1190/1.2952915

 

  1. Popov P, Qin G, Bi L, Kang Z, Li J. Multiphysics and multiscale methods for modeling fluid flow through naturally fractured carbonate karst reservoirs. SPE Reserv Eval Eng. 2009;12(02):218-231. doi: 10.2118/105378-PA

 

  1. Maultzsch S, Chapman M, Liu E, Li XY. Modelling and analysis of attenuation anisotropy in multi azimuth VSP data from the Clair field. Geophys Prospect. 2007;55:627-642. doi: 10.1111/j.1365-2478.2007.00645.x

 

  1. Far ME, Wagner D, Hardage B. Fracture parameter inversion for marcellus shale. Geophysics. 2014;79(3):55-63. doi: 10.1190/geo2013-0236.1

 

  1. Li MQ. Seismic Response Analysis and Parameter Inversion of Monoclinic Media. Beijing: China University of Geosciences; 2023.

 

  1. Helbig K. Foundations of Anisotropy for Exploration Seismics. United Kingdom: Pergamon Press; 1994. p. 22.

 

  1. Tsvankin I. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media. Society of Exploration Geophysicists. Netherlands: Elsevier; 2012.

 

  1. Iverson WP. Closure STRESS Calculations in Anisotropic Formations. In: SPE Low Permeability Reservoirs Symposium, Society of Petroleum Engineers; 1995.
Share
Back to top
Journal of Seismic Exploration, Print ISSN: 0963-0651, Published by AccScience Publishing