ARTICLE

Synthetic data tests of 3D full-wavefield inversion for P-wave anisotropic parameter estimation in flat layered VTI, HTI and orthorhombic media

H. CHANG G.A. MCMECHAN
Show Less
Center for Lithospheric Studies, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, U.S.A.,
JSE 2009, 18(3), 249–270;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chang, H. and McMechan, G.A., 2009. Synthetic data tests of 3D full-wavefield inversion for P-wave anisotropic parameter estimation in flat layered VTI, HTI and orthorhombic media. Journal of Seismic Exploration, 18: 249-270. Full-wavefield inversion is developed to estimate the P-wave anisotropic parameters for VTI, HTI and orthorhombic media. With full-wavefield inversion, both the traveltime and amplitude information are utilized simultaneously. The unknowns are velocities in three orthogonal directions, the azimuth of the fast horizontal velocity, and the thickness of each anisotropic layer. This parameterization assumes elliptical anisotropy, and hence limits the inversion to near offset data. A linearized (conjugate gradient) inversion is performed, in layer stripping mode, for parameters of overlapping pairs of layers; conventional isotropic NMO provides adequate starting models. All layers are inverted as if they were orthorhombic; the inversion results reveal the actual anisotropic symmetry that is present in each layer. The inversion is illustrated by application to synthetic data for a four-layer model containing three anisotropic symmetries (VTI, HTI and orthorhombic). Unlike traveltime-based estimations, full-wavefield inversion can recover anisotropic parameters using only surface survey P-wave data; most of the inverted parameters have errors less than two percent for noise-free data. Noise contamination leads to increasing errors with increasing depth. The standard deviations of the parameter estimates are reduced, and the azimuthal coverage is improved as the number of sources increases. The inversion results for a layer are most satisfactory when constraints provided by reflections from both upper and lower interfaces are available. Correlation analysis between the parameters reveals a strong positive correlation between depth and vertical velocity in all media, and a strong correlations between fracture orientation and horizontal velocities in HTI and orthorhombic media. This approach provides an alternative to the usual use of traveltimes only for anisotropic parameter estimation. It sets the stage for extending full waveform inversion to elastic, non-elliptical, anisotropic models with more complicated geometries and symmetries.

Keywords
3D
anisotropy
full-wave
inversion
References
  1. Al-Dajani, A. and Alkhalifah, T., 2000. Reflection moveout inversion for horizontal transverse
  2. isotropy: Accuracy, imitation, and acquisition. Geophysics, 65: 222-231.
  3. Alkhalifah, T., 1997. Velocity analysis using nonhyperbolic moveout in transversely isotropic media.
  4. Geophysics, 62: 1839-1854.
  5. Alkhalifah, T. and Tsvankin, I., 1995. Velocity analysis for transversely isotropic media.
  6. Geophysics, 60: 1550-1566.
  7. 270 CHANG & MCMECHAN
  8. Dong, Z.X. and McMechan, G.A., 1991. Numerical modeling of seismic waves with a 3-D
  9. anisotropic scalar-wave equation. Bull. Seismol. Soc. Am., 81: 769-780.
  10. Grechka, V. and Tsvankin, I., 1999. 3-D moveout velocity analysis and parameter estimation for
  11. orthorhombic media. Geophysics, 64: 820-837.
  12. Grechka, V., Pech, A. and Tsvankin, I., 2002. P-wave stacking velocity tomography for VTI media.
  13. Geophys. Prosp., 50: 151-168.
  14. Grechka, V., Pech, A. and Tsvankin, I., 2005. Parameter estimation in orthorhombic media using
  15. multicomponent wide-azimuth reflection data. Geophysics, 70: D1-D8.
  16. Le Stunff, Y., Grechka, V. and Tsvankin, I., 2001. Depth-domain velocity analysis in VTI media
  17. using surface P-wave data: Is it feasible?. Geophysics, 66: 897-903.
  18. Martinez, R.D. and McMechan, G.A., 1991. Tau-p seismic data for viscoelastic media - Part 2:
  19. linearized inversion. Geophys. Prosp., 39: 157-182.
  20. Mora, P., 1989. Inversion = migration + tomography. Geophysics, 54: 1575-1586.
  21. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  22. Thomsen, L., 2002. Understanding seismic anisotropy in exploration and exploitation. 2002 SEG
  23. distinguished instructor short course.
  24. Tiwari, U.K. and McMechan, G.A., 2007. Effects of incomplete parameterization on inversion of
  25. full-wavefield inversion of viscoelastic seismic data for petrophysical reservoir properties.
  26. Geophysics, 72: 9-17.
  27. Tsvankin, I., 1997a. Anisotropic parameters and P-wave velocity for orthorhombic media.
  28. Geophysics, 62: 1292-1309.
  29. Tsvankin, I., 1997b. Reflection moveout and parameter estimation for horizontal transverse isotropy.
  30. Geophysics, 62: 614-629.
  31. Tsvankin, I. and Thomsen, L., 1994. Nonhyperbolic reflection moveout in anisotropic media.
  32. Geophysics, 59: 1290-1304.
  33. Tsvankin, I. and Grechka, V., 2000. Dip moveout of converted waves and parameter estimation in
  34. transversely isotropic media. Geophys. Prosp., 48: 257-292.
  35. Xu, T., McMechan, G.A. and Sun, R., 1995. 3-D prestack full-wavefield inversion. Geophysics,
  36. 60: 1805-1818.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing