ARTICLE

Theoretical elastic stiffness tensor models at high crack density

YANRONG HU GEORGE A. MCMECHAN
Show Less
Center for Lithospheric Studies, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, U.S.A.,
JSE 2010, 19(1), 43–68;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Hu, Y. and McMechan, G.A., 2010. Theoretical elastic tensor models at high crack density. Journal of Seismic Exploration, 19: 43-68. Elastic stiffness tensor values in cracked rocks depend on the crack density, and on the shapes, fluid content, orientation, and spatial distribution of the cracks. The mathematical expression of anisotropy is embedded in the elastic stiffness tensor. Thus, in reservoir characterization by anisotropic seismic modeling, inversion and interpretation, a key step is to represent the rock properties in terms of the equivalent anisotropic elastic stiffness tensor. We compare the strengths, limitations, and relationships between the anisotropic elastic stiffness tensor elements predicted for a transversely isotropic medium with a horizontal symmetry axis,using a variety of theoretical formulations, including equivalent single inclusion approximations, smoothing, self consistent approximation (SCA), differential effective medium (DEM) methods, linear slip (LS), and T-matrix methods. These formulations differ in their crack parametrizations, the assumptions and approximations involved, and the corresponding consequences of these. All the formulations involve theoretical extrapolations. Absolute accuracy is not known for high crack density because, while there is substantial internal consistency between the theoretical results when crack interactions are included, there is to date, only limited external validation in terms of physical and numerical experiments at high crack densities. At high crack densities, where crack interactions are important, physically reasonable values are expected to be predicted only by the formulations that implicitly or explicitly consider these effects. These methods are the SCA, DEM, LS and T-matrix methods. For a coal example, all these four methods predict similar elastic stiffness tensor values up to volume crack densities of <0.3, beyond which, the spatial distribution of cracks in the various models becomes increasingly important. In a medium with perfectly aligned fractures, the shear modulus normal to the symmetry plane shows the greatest relative variation between models at high crack density.

Keywords
elastic tensor
anisotropy
crack density
References
  1. Ass’ad, J.M., Tatham, R.H. and McDonald, J.A., 1992. A physical model study of
  2. microcrack-induced anisotropy. Geophysics, 57: 1562-1570.
  3. Ass’ad, J.M., Riveros, C., Sismos, S.A., Kamel, M.H. and McDonald, J.A., 1993a. Ultrasonic
  4. velocity measurements in a cracked solid: experimental versus theory. Expanded Abstr., 63rd
  5. Ann. Internat. SEG Mtg., Washington D.C.: 762-764.
  6. 66 HU & MCMECHAN
  7. Ass’ad, J.M., Tatham, R.H. and McDonald, J.A., 1993b. A physical model study of scattering of
  8. waves by aligned craks: comparison between experiment and theory. Geophys. Prosp., 41:
  9. 323-339.
  10. Benveniste, Y., 1986. On the Mori-Tanaka method for cracked solids. Mechan. Res. Communic.,
  11. 13: 193-201.
  12. Bristow, J.R., 1960. Microcracks and the static and dynamic elastic constantsof annealed heavily
  13. cold-worked metals. Brit. J. Appl. Phys., 11: 81-85.
  14. Budiansky, B. and O’Connell, R.J., 1976. Elastic moduli of a cracked solid. Internat. J. Solids
  15. Struct., 12: 81-97.
  16. Castaneda, P.P. and Willis, J.R., 1995. The effect of spatial distribution on the effective behavior
  17. of composite materials and cracked media. J. Mechanics Phys. Solids, 43: 1919-1951.
  18. Cheng, C.H., 1978. Seismic Velocities in Porous Rocks: Direct and Inverse Problems. Sc.D.
  19. Thesis, Massachusetts Institute of Technology, Cambridge.
  20. Cheng, C.H., 1993. Crack models for a transversely isotropic medium. J. Geophys. Res., 98:
  21. 675-684.
  22. Crampin, S., 1984. Effective anisotropic elastic constants for wave propagation through cracked
  23. solids. Geophys. J. Roy. Astronom. Soc., 76: 135-145.
  24. Crampin, S., 1994. Comments on 'Crack models for a transversely isotropic medium' by C.H.
  25. Cheng and comment by C.M. Sayers. J. Geophys. Res., 99: 11749-11751.
  26. Crampin, S., McGonigle, R. and Bamford, D., 1980. Estimating crack parameters from
  27. observations of P-wave velocity anisotropy. Geophysics, 45: 345-360.
  28. Dahm, T. and Becker, Th., 1998. On the elastic and viscous properties of media containing strongly
  29. interacting cracks. Pure Appl. Geophys., 151: 1-16.
  30. David, C., Menendez, B. and Darot, M., 1999. Influence of stress-induced and thermal cracking
  31. on physical properties and microstructure of La Peyratte granite. Internat. J. Rock Mechan.
  32. Mining Sci., 36: 433-448.
  33. Davis, P.M. and Knopoff, L., 1995. The elastic modulus of media containing strongly interacting
  34. antiplane cracks. J. Geophys. Res., 100: B9, 18253-18258.
  35. Douma, J., 1988. The effect of the aspect ratio on cracked-induced anisotropy. Geophys. Prosp.,
  36. 36: 614-632.
  37. Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related
  38. problems. Proc. Roy. Soc. London, Series A, Mathematical and Physical Sciences, 241:
  39. 376-396.
  40. Grechka, V. and Kachanov, M., 2006a. Seismic characterization of multiple fracture sets: Does
  41. orthotropy suffice? Geophysics, 71: D93-D105.
  42. Grechka, V. and Kachanov, M., 2006b. Effective elasticity of rocks with closely spaced and
  43. intersecting cracks. Geophysics, 71: D85-D91.
  44. Grechka, V. and M. Kachanov, 2006c. The influence of crack shapes on the effective elasticity of
  45. fractured rocks. Geophysics, 71: D153-D160.
  46. Grechka, V. and Kachanov, M., 2006d. The influence of crack shapes on the effective elasticity of
  47. fractured rocks: A snapshot of the work in progress, Tutorial. Geophysics, 71: W45-W58.
  48. Gupta, I.N., 1973. Seismic velocities in rock subjected to axial loading up to shear fracture. J.
  49. Geophys. Res., 78: 6936-6942.
  50. Hadley, K., 1975. Vp/Vs anomalies in dilatant rock samples. Pure Appl. Geophys., 113: 1-23.
  51. Hashin, Z., 1988. The differential scheme and its application to cracked materials. J. Mechan. Phys.
  52. Solids, 36: 719-734.
  53. Hoening, A., 1979. Elastic moduli of a non-randomly cracked body. Internat. J. Solids Struct., 15:
  54. 137-154.
  55. Hornby, B.E., Schwartz, L.M. and Hudson, J.A., 1994. Anisotropic effective-medium modeling
  56. of the elastic properties of shales. Geophysics, 59: 1570-1583.
  57. Hu, Y., 2008. Stiffness tensor models for high crack density with application to seismic modeling
  58. and imaging of coal and carbonate reservoirs. Ph.D. Dissertation, The University of Texas
  59. at Dallas.
  60. ELASTIC STIFFNESS TENSOR 67
  61. Hu, Y. and McMechan, G.A., 2009. Comparison of effective stiffness and compliance for
  62. characterizing cracked rocks. Geophysics, 74: D49-D55.
  63. Hudson, J.A., 1980. Overall properties of a cracked solid. Mathemat. Proc. Cambridge Philosoph.
  64. Soc., 88: 371-384.
  65. Hudson, J.A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks.
  66. Geophys. J. Roy. Astronom. Soc., 64: 133-150.
  67. Hudson, J.A., 1986. A higher order approximation to the wave propagation constants for a cracked
  68. solid. Geophys. J. Roy. Astronom. Soc., 87: 265-274.
  69. Hudson, J.A., 1988. Seismic wave propagation through material containing partially saturated
  70. cracks. Geophys. J., 92: 33-37.
  71. Hudson, J.A., 1994. Overall properties of a material with inclusions or cavities. Geophys. J.
  72. Internat., 117: 555-561.
  73. Hudson, J.A., Liu, E. and Crampin, S., 1996. The mechanical properties of materials with
  74. interconnected cracks and pores. Geophys. J. Internat., 124: 105-112.
  75. Hudson, J.A. and Liu, E., 1999. Effective elastic properties of heavily faulted structures.
  76. Geophysics, 64: 479-485.
  77. Jakobsen, M., 2004. The interacting inclusion model of wave-induced fluid flow. Geophys. J.
  78. Internat., 158: 1168-1176.
  79. Jakobsen, M., Hudson, J.A. and Johansen, T.A., 2003. T-Matrix approach to shale acoustics.
  80. Geophys. J. Internat., 154: 533-558.
  81. Jakobsen, M. and Johansen, T.A., 2000. Anisotropic approximations for mudrocks: A seismic
  82. laboratory study. Geophysics, 65: 1711-1725.
  83. Kachanov, M., 1980. Continuum model of medium with cracks. J. Engineer. Mechan. Div., ASCE,
  84. 106(EMS5): 1039-1051.
  85. Kachanoy, M., 1992. Effective elastic properties of cracked solids: Critical review of some basic
  86. concepts. Appl. Mechanics Rev., 45: 305-336.
  87. Kachanov, M., 1994. Elastic solids with many cracks and related problems. In: Hutchinson J. and
  88. Wu, T. (Eds.), Advances in Applied Mechanics. Academic Press, New York: 256-426.
  89. Lin, S.C. and Mura, T., 1973. Elastic fields of inclusions in anisotropic media (II): Physica Status
  90. Solidi (a), 15: 281-285.
  91. Liu, E., 2007. Introduction, Special issue on seismic anisotropy, Part I - Fracture Characterization.
  92. J. Seismic Explor., 16: 105-114.
  93. Liu, E., Hudson, J.A. and Pointer, T., 2000. Equivalent medium representation of fractured rock.
  94. J. Geophys. Res., 105: 2981-3000.
  95. Lo, T.W., Coyner, K.B. and Tokséz, M.N., 1986. Experimental determination of elastic anisotropy
  96. of Berea sandstone, Chicopee shale, and Chelmsford granite. Geophysics, 51: 164-171.
  97. Mauge, C. and Kachinov, M., 1994. Effective elastic properties of on anisotropic material with
  98. arbitrarily oriented interacting cracks. J. Mechan. Phys. Solids, 42: 561-584.
  99. Mori, T. and Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials
  100. with misfitting inclusions. Acta Metallurg., 21: 571-574.
  101. Nishizawa, O., 1982. Seismic velocity anisotropy in a medium containing oriented cracks -
  102. transversely isotropic case. J. Phys. Earth, 30: 331-347.
  103. Nur, A. and Simmons, G., 1969. Stress-induced velocity anisotropy in rock: an experimental study.
  104. J. Geophys. Res., 74: 6667-6674.
  105. O’Connell, R.J. and Budiansky, B., 1974. Seismic velocities in dry and saturated cracked solids.
  106. J. Geophys. Res., 79: 5412-5426.
  107. O’Connell, R.J. and Budiansky, B., 1977. Viscoelastic properties of fluid saturated cracked solids.
  108. J. Geophys. Res., 82: 5719-5735.
  109. Peacock, S., McCann, C., Sothcott, J. and Astin, T.R., 1994. Seismic velocities in fractured rocks:
  110. an experimental verification of Hudson’s theory. Geophys. Prosp., 42: 27-80.
  111. Piau, M., 1980. Crack-induced anisotropy and scattering in stressed rocks. Internat. J. Engineer.
  112. Sci., 19: 549-568.
  113. 68 HU & MCMECHAN
  114. Ramos-Martinez, J., Ortega, A.A and McMechan, G.A., 2000. 3-D seismic modeling for fractured
  115. media: Shear-wave splitting at vertical incidence in one and multiple layers. Geophysics, 65:
  116. 211-221.
  117. Rathore, J.S., Fjaer, E., Holt, R.M. and Renlie, L., 1991. Experimental versus theoretical acoustic
  118. anisotropy in controlled cracked synthetics. Expanded Abstr., 61st Ann. Internat. SEG Mtg.,
  119. Houston: 687-690.
  120. Rathore, J.S., Fjaer, E., Holt, R.M. and Renlie, L., 1994, P- and S-wave anisotropy with controlled
  121. crack geometry. Geophys. Prosp., 43: 711-728.
  122. Saenger, E.H., 2007. Comment on 'Comparison of the non-interaction and differential schemes in
  123. predicting the effective elastic properties of fractures media' by V. Grechka. Internat. J.
  124. Fracture, 146: 291-292.
  125. Saenger, E.H., Kriiger, O.S. and Shapiro, S.A., 2004. Effective elastic properties of randomly
  126. fractured soils: 3D numerical experiments. Geophys. Prosp., 52: 183-195.
  127. Saenger, E.H., Kriiger, O.S. and Shapiro, S.A., 2006. Effective elastic properties of fractured
  128. tocks: Dynamic vs. static considerations. Expanded Abstr., 76th Ann. Internat. SEG Mtg.,
  129. New Orleans: 1948-1951.
  130. Saenger, E.H. and Shapiro, S.A., 2002. Effective elastic velocities in fractured media: A numerical
  131. study using the rotated staggered finite-difference grid. Geophys. Prosp., 50: 183-194.
  132. Salganik, R.L., 1973. Mechanics of bodies with a large number of cracks. Mechan. Solids, 8(4):
  133. 135-143.
  134. Sayers, C.M., 1994. Reply of 'Comment on ’Crack models for a transversely isotropic medium’
  135. by C.H. Cheng and comment by C. M. Sayers'. J. Geophys. Res., 99(B6): 11753-11754.
  136. Sayers, C.M. and Kachanov, M., 1995. A simple technique for finding effective elastic constants
  137. of cracked solids for arbitrary crack orientation statistics. Internat. J. Solids and Struct., 27:
  138. 671-680.
  139. Schoenberg, M., 1980. Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am., 68:
  140. 1516-1521.
  141. Schoenberg, M. and Douma, J., 1988. Elastic wave propagation in media with parallel fractures and
  142. aligned cracks. Geophys. Prosp., 36: 571-590.
  143. Schoenberg, M. and Sayers, C.M., 1995. Seismic anisotropy of fractured rock. Geophysics, 60:
  144. 204-211.
  145. Sevostianov, I. and Kachanov, M., 2001. Elastic compliance of an annular crack. Internat. J. Fract.,
  146. 110: L31-L34.
  147. Sevostianov, I. and Kachanov, M., 2002. On the elastic compliances of irregularly shaped cracks.
  148. Internat. J. Fract., 114: 245-257.
  149. Sheng, P., 1990. Effective-medium theory of sedimentary rocks. Phys. Review B, 41: 4507-4511.
  150. Shuck, E.L., Davis, T.L. and Benson, R.D., 1996. Multicomponent 3-D characterization of a
  151. coalbed methane reservoir. Geophysics, 61: 315-330.
  152. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  153. Thomsen, L., 1995. Elastic anisotropy due to aligned cracks in porous rocks. Geophys. Prosp., 43:
  154. 805-829.
  155. Vavakin, A.S. and Salganik, R.L., 1975. Effective characteristics of nonhomogeneous media with
  156. isolated inhomogeneities. Mechan. Solids, 10: 58-66 (English translation from Izvestia AN
  157. USSR, Mekhanika Tverdogo Tela, 10: 65-77.
  158. Walsh, J.B., 1965a. The effect of cracks on the compressibility of rocks. J. Geophys. Res., 70:
  159. 381-389.
  160. Walsh, J.B., 1965b. The effect of cracks on uniaxial compression of rocks. J. Geophys. Res., 70:
  161. 399-411.
  162. Wang, Z., 2002. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics, 67:
  163. 1423-1440.
  164. Willis, J.R., 1977. Bounds and self consistent estimates for the overall properties of anisotropic
  165. composites. J. Mechan. Phys. Solids, 25: 185-202.
  166. Zeller, R. and Dederichs, P.H., 1973. Elastic constants of polycrystals, Physical Status solid (b),
  167. 55: 831-843.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing