Application of sparse dictionary learning to seismic data reconstruction

Khatami, H.R., Riahi, M.A. and Abedi, M.M., 2023. Application of sparse dictionary learning to seismic data reconstruction. Journal of Seismic Exploration, 32:185-204. According to the principle of compressed sensing (CS), under-sampled seismic data can be interpolated when the data becomes sparse in a transform domain. To sparsify the data, dictionary learning presents a data-driven approach trained to be optimized for each target dataset. This study presents an interpolation method for seismic data in which dictionary learning is employed to improve the sparsity of data representation using improved Kth Singular Value Decomposition (K-SVD). In this way, the transformation will be highly compatible with the input data, and the data in the converted domain will be sparse. In addition, the sampling matrix is produced with the restricted isometry property (RIP). To reduce the sensitivity of the minimizer term to the outliers, we use the smooth L1 minimizer as a regularization term in the regularized orthogonal matching pursuit (ROMP). We apply the proposed method to both synthetic and real seismic data. The results show that it can successfully reconstruct seismic data.
- Baraniuk, R.G. and Steeghs, P., 2017. Compressive sensing: A new approach to seismic
- data acquisition. The Leading Edge, 36: 642-645.
- Boyd, S. and Vandenberghe, ]., 2004. Convex Optimization. Cambridge University Press,
- New York.
- Candés, E.J., Romberg, J. and Tao, T., 2006. Robust uncertainty principles: Exact signal
- reconstruction from highly incomplete frequency information. IEEE Transact.
- Info.. Theory, 52: 489-509.
- Candés, E.J., Wakin, M.B. and Boyd, S.P., 2008. Enhancing sparsity by reweighted 1 1
- minimiz.. J. Fourier Analys. Applicat., 14: 877-905.
- Chen, Y., Ma, J. and Fomel, S., 2016. Double-sparsity dictionary for seismic noise
- attenuation. Geophysics, 81, 2: V103—V116.
- Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
- seismic data. Geophys. J. Internat., 209: 21-31.
- Donoho, D.L., 2006. Compressed sensing. IEEE Transact. Informat. Theory, 52:1289-
- Donoho, D.L., Elad, M. and Temlyakov, V.N., 2005. Stable recovery of sparse
- overcomplete representations in the presence of noise. IEEE Transact. Informat.
- Theory, 52: 6-18.
- Duarte, M.F. and Eldar, Y.C., 2011. Structured compressed sensing: From theory to
- applications. IEEE Transact. Signal Process., 59: 4053-4085.
- Elad, M. and Aharon, M., 2006. Image denoising via sparse and redundant
- representations over learned dictionaries. IEEE Transact. Image Process., 15: 3736-
- Gilbert, A.C., Muthukrishnan, S. and Strauss, M., 2005. Improved time bounds for near-
- optimal sparse Fourier representations. In: Wavelets XI, 5914: 398-412. SPIE.
- doi: 10.1117/12.615931
- Herrmann, F.J. and Hennenfent, G., 2008. Non-parametric seismic data recovery with
- curvelet frames. Geophys. J. Internat., 173: 233-248.
- Herrmann, F.J., Wason, H. and Lin, T., 2011. Compressive sensing in seismic
- exploration: an outlook on a new paradigm. CSEG Recorder, 36: 19-33.
- Iwen, M.A., 2007. A deterministic sub-linear time sparse Fourier algorithm via non-
- adaptive compressed sensing methods. arXiv: 0708.1211v1.
- doi.org/10.48550/arXiv.0708.1211
- Jahanjooy, S., Nikrouz, R. and Mohammed, N., 2016. A faster method to reconstruct
- seismic data using the anti-leakage Fourier transform. J. Geophys. Engineer., 13:
- 86-95.
- Kaur, H., Pham, N. and Fomel, S., 2019. Seismic data interpolation using CycleGAN.
- Expanded Abstr., 89th Ann. Internat. SEG Mtg., San Antonio: 2202-2206.
- Lan, N.Y., Zhang, F. C. and Yin, X.Y., 2022. Seismic data reconstruction based on low
- dimensional manifold model. Petrol. Sci., 19: 518-533.
- Lotfi, M. and Vidyasagar, M., 2018. A fast noniterative algorithm for compressive
- sensing using binary measurement matrices. IEEE Transact. Signal Process., 66:
- 4079-4089.
- Mallat, S.G. and Zhang, Z., 1993. Matching pursuits with time-frequency dictionaries.
- IEEE Transact. Signal Process., 41: 3397-3415.
- Meng, F., Yang, X., Zhou, C. and Li, Z., 2017. A sparse dictionary learning-based
- adaptive patch inpainting method for thick cloud removal from high-spatial
- resolution remote sensing imagery. Sensors, 17: 2130.
- Nazari Siahsar, M.A., Gholtashi, S., Abolghasemi, V. and Chen, Y., 2017a.
- Simultaneous denoising and interpolation of 2D seismic data using data-driven non-
- negative dictionary learning. Signal Process., 141: 309-321.
- Nazari Siahsar, M.A., Gholtashi, S., Roshandel Kahoo, A., Chen, W. and Chen, Y.,
- 2017b. Data-driven multitasks sparse dictionary learning for noise attenuation of 3D
- seismic data. Geophysics, 82, 6: V385—V396.
- Needell, D. and Tropp, J.A., 2009. CoSaMP: Iterative signal recovery from incomplete
- and inaccurate samples. Appl. Computat. Harmon. Analis., 26: 301-321.
- Needell, D. and Vershynin, R., 2010. Signal recovery from incomplete and inaccurate
- measurements via regularized orthogonal matching pursuit. IEEE J. Select. Topics
- Signal Process., 4: 310-316.
- Oguz, I., Zhang, L., Abramoff, M.D. and Sonka, M., 2016. Optimal retinal cyst
- segmentation from OCT images. In: Medical Imag. 2016: Image Process.. 9784:
- 375-381. Comput. Sci. SPIE Medical Imaging.
- She, B., Wang, Y., Liu, Z., Cai, H., Liu, W. and Hu. G.M., 2019, Seismic impedance
- inversion using dictionary learning-based sparse representation and nonlocal
- similarity. Interpretation, 7: SE51-SE67.
- Shi, R., Bing Li, B. and Zhang, J., 2018. Modulated signal denoising algorithm based on
- improved K-SVD. IOP Conf. Series: Materials Science and Engineering 452: 1-6.
- doi: 10.1088/1757-899X/452/3/032064.
- Strohmer, T. and Heath, R.W., 2003. Grassmannian frame with applications to coding
- and communication. Appl. Computat. Harmon. Analys., 14: 257-275.
- Sun, H.M., Jia, R.S., Zhang, X.L., Peng, Y. J. and Lu. X.M., 2019. Reconstruction of
- missing seismic traces based on sparse dictionary learning and the optimization of
- measurement matrices. J. Petrol. Sci. Engineer., 175: 719-727.
- Tropp, JA. and Gilbert, A.C., 2007. Signal recovery from random measurements via
- orthogonal matching pursuit. IEEE Transact. Informat. Theory, 53: 4655-4666.
- Wang, H., Chen, W., Zhang, Q., Liu, X., Zu, S. and Chen, Y., 2020. Fast dictionary
- learning for high-dimensional seismic reconstruction. IEEE Transact. Geosci.
- Remote Sens., 59: 7098-7108.
- Yu, S., Ma, J., Zhang, X. and Sacchi, M.D., 2015. Interpolation and denoising of high-
- dimensional seismic data by learning a tight frame. Geophysics, 80(2): V119-V132.
- Zhou, Y., Gao, J., Chen, W. and Frossard, P., 2016. Simultaneous source separation via
- patchwise sparse representation. IEEE Transact. Geosci. Remote Sens., 54: 5271-
- Zu, S., Zhou, H., Wu, R., Mao, W. and Chen, Y., 2018. Hybrid-sparsity constrained
- dictionary learning for iterative deblending of extremely noisy simultaneous-source
- data. IEEE Transact. Geosci. Remote Sens., 57: 2249-2262.