Evaluating marine gas-hydrate systems Part I: stochastic rock-physics models for electrical resistivity and seismic velocities of hydrate-bearing sediments

Sava, D. and Hardage, B.A., 2010. Evaluating marine gas-hydrate systems. Part I: Stochastic rock-physics models for electrical resistivity and seismic velocities of hydrate-bearing sediments. Journal of Seismic Exploration, 19: 371-386. There is an increased need for investigating marine gas-hydrate systems to estimate the magnitude of the energy resource represented by the hydrate and to identify any unstable seafloor conditions that may result from hydrate dissociation, which can jeopardize drilling activities. Deep-water gas-hydrate systems can be studied on large scales with geophysical techniques, such as seismic and electrical surveys. To evaluate near-seafloor gas-hydrate environments we first need to build rock-physics quantitative relations between measurable parameters, such as elastic and electrical properties of sediments containing hydrates, and gas-hydrate saturation. In this study we assume a model of isotropic, load-bearing hydrates, uniformly distributed in the near-seafloor sediments. This Part I of a 2-paper series presents a method for stochastic joint modeling of elastic properties and electrical resistivity of gas-hydrate sediments. The petrophysical parameters involved in the modeling are difficult to estimate and are uncertain. Therefore, probability distribution functions (PDFs) are used to account for the uncertainty associated with each of the petrophysical quantities involved in the modeling. Both electrical resistivity and seismic velocities depend on porosity of the sediments and hydrate concentration, and we refer to them as common model parameters. A Monte Carlo procedure is used to draw values for these common parameters from their associated PDFs and then compute the corresponding velocity and electrical resistivity values using Monte Carlo draws from the PDFs for each of the petrophysical parameters that are required for elastic modeling and for Archie equation for electrical resistivity. The outcome of this procedure is represented by many Monte Carlo realizations that jointly relate hydrate concentration, resistivity, and seismic propagation velocity. This joint relation varies with depth and it is non-unique and uncertain due to variability of the input parameters. These theoretical relations can then be used to estimate hydrate concentration in Green Canyon Gulf of Mexico through a joint inversion technique presented in the Part II.
- Allen, P. and Allen, J., 1990. Basin Analysis: Principles and applications. Blackwell Scientific
- Publications, Oxford.
- Archie, G.E., 1942. The electric resistivity log as an aid in determining some reservoir
- characteristics. Trans. AIME, 46: 54.
- Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophysics, 57: 1396-1408.
- Bayes, T., 1783. An essay towards solving a problem in the doctrine of chances, Phil. Trans. Roy.
- Soc., 53: 370-418.
- Berryman, J.G., 1995. Mixture theories for rock properties. In: Ahrens, U.J. (Ed.), Rock Physics
- and Phase Relations: A Handbook of Physical Constants. AGU, Washington, D.C. : 205-228.
- Carcione, J.M. and Tinivella, U., 2000. Bottom-simulating reflectors: Seismic velocities and AVO
- effects. Geophysics, 65: 54-67.
- Chand, S., Minshull, T.A., Gei, D. and Carcione, J.M., 2004. Elastic velocity models for
- gas-hydrate-bearing sediments-a comparison. Geophys. J. Int., 159: 573-590.
- Clavier, C., Coates, G. and Dumanoir, J., 1977. The Theoretical and Experimental Bases for the
- 'Dual Water' Model for the Interpretation of Shaly Sands. SPE 6859: 1-16.
- Collett, T.S., 1998. Well log evaluation of gas hydrate saturations. Transact. Soc. Profess. Well Log
- Analysts, 39th Ann. Logging Symp., Paper MM.
- Collett, T.S. (2001), A review of well-log analysis techniques used to assess gas-hydrate-bearing
- reservoirs. In: Natural Gas Hydrates: Occurrence, Distribution, and Detection. AGU
- Geophys. Monograph, 124: 189-210.
- DeAngelo, M.V., Murray, P.E., Hardage, B.A. and Remington, R.L., 2008. Integrated 2D 4-C
- OBC seismic velocity analysis of near-seafloor sediments, Green Canyon, Gulf of Mexico.
- Geophysics, 73: B109-B115.
- Dvorkin, J. and Nur, A., 1996. Elasticity of high-porosity sandstones: theory for two North Sea data
- sets. Geophysics, 61: 1363-1370.
- Dvorkin, J., Prasad, M., Sakai, A. and Lavoie, D., 1999. Elasticity of marine sediments. Geophys.
- Res. Lett., 26: 1781-1784.
- Ecker, C., Dvorkin, J. and Nur., A., 2000. Estimating the amount of gas hydrate and free gas from
- marine seismic data. Geophysics, 62: 565-573.
- Gassmann, F., 1951. On the elasticity of porous media. Vier. Natur. Gesellsch. Ziirich, 96: 1-23.
- Hardage, B.A., Roberts, H.H., Murray, P.E., Remington, R., Sava, D.C., Shedd W. and Hunt,
- J.Jr., 2010. Multicomponent seismic technology assessment of fluid-gas explosion geology,
- Gulf of Mexico. In: Collett, T., Johnson, A., Knapp, C. and Boswell, R. (Eds.), Natural
- Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards. AAPG Memoir
- 89: 247-265.
- Hashin, Z. and Shtrikman, S., 1962. A variational approach to the theory of effective magnetic
- permeability of multiphase materials. J. Appl. Phys., 33: 3125-3131.
- Hashin, Z. and Shtrikman, S., 1963. A variational approach to the elastic behavior of multiphase
- materials. J. Mech. Phys. Solids, 11: 127-140.
- Helgerud, M.B., Dvorkin, J., Nur, A., Sakai, A. and Collet, T., 1999. Elastic-wave velocity in
- marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett., 26:
- 2021-2024.
- MARINE GAS-HYDRATE SYSTEMS 385
- Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A. and Lizarralde, D. & Leg 164 Scientific
- Party, 1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic
- profiling. Science, 273: 1840-1843.
- Jackson, P.D., Taylor Smith, D. and Stanford, P.N., 1978. Resistivity-porosity-particle shape
- relationships for marine sands. Geophysics, 43: 1250.
- Kleinberg, R.L. and Dai, J., 2005. Estimation of the mechanical properties of natural gas hydrate
- deposits from petrophysical measurement. OTC, 17205, Offshore Technol. Conf., Houston,
- TX, May 2005.
- Lee, M.W., Hutchinson, D.R., Collet, T.S. and Dillon, W.P., 1996. Seismic velocities for hydrate
- bearing sediments using weighted equation. J. Geophys. Res., 101: 347-358.
- Lu, S. and McMechan, G.A., 2002. Estimation of gas hydrate and free gas saturation,
- concentration, and distribution from seismic data. Geophysics, 67: 582-593.
- Lu, S. and McMechan, G.A., 2004. Elastic impedance inversion of multichannel seismic data from
- unconsolidated sediments containing gas hydrate and free gas. Geophysics, 69: 164-179.
- Mavko G., Mukerji, T. and Dvorkin, J., 1998. The Rock Physics Handbook. Cambridge University
- Press, Cambridge.
- Mendelson, K.S. and Cohen, M.H., 1982. The effect of grain anisotropy on the electrical properties
- of sedimentary rocks. Geophysics, 47: 257-263.
- Miller, J.J., Lee, M.W. and von Huene, R., 1991. An analysis of seismic reflection from the base
- of a gas hydrate zone, offshore Peru. AAPG Bulletin, 75: 910-924.
- Mindlin, R.D., 1949. Compliance of elastic bodies in contact. J. Appl. Mech., 16: 259-268.
- Murray, D.R., Kleinberg, R.L., Sinha, B.K., Fukuhara, M., Osawa, O., Endo, T. and Namikawa,
- T., 2006. Saturation, acoustic properties, growth habit, and state of stress of a gas hydrate
- reservoir from well logs. Petrophysics, 47: 129-137.
- Nur, A., Mavko, G., Dvorkin, J. and Galmudi, D., 1998. Critical porosity: a key to relating
- physical properties to porosity in rocks. The Leading Edge, 17: 357-362.
- earson, C.F., Hallek, P.M., McGuire, P.L., Hermes, R. and Mathews, M., 1983. Natural gas
- hydrate deposits: a review of in-situ properties. J. Phys. Chem., 87: 4180-4185.
- Prasad, M. and Dvorkin, J., 2001. Velocity to porosity transform in marine
- sediments. Petrophys., 42: 429-437.
- Ramm, M. and Bjoerlykke, K., 1994. Porosity/depth trends in reservoir sandstones: assessing the
- quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian
- shelf data. Clay Miner., 29: 475-490.
- Rubey, W. and Hubbert, M.K., 1959. Role of fluid pressure in mechanics of overthrust faulting,
- II. Geol. Soc. Amer. Bull., 70: 167-206.
- Sava, D.C. and Hardage, B.A., 2006. Rock physics characterization of hydrate-bearing deepwater
- sediments. The Leading Edge, 25: 616-619.
- Sava, D.C. and Hardage, B.A., 2010. Rock-physics models for gas-hydrate systems associated with
- unconsolidated marine sediments. In: Collett, T., Johnson, A., Knapp, C. and Boswell, R.
- (Eds.), Natural Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards.
- AAPG Memoir 89: 505-524.
- Sloan, D.E. and Koh, C.A., 2008. Clathrate Hydrates of Natural Gases,. 3rd Ed., CRC Press, Boca
- Raton.
- Walton, K., 1987. The etfective elastic moduli of a random packing of spheres, J. Mech. Phys.
- Solids, 35: 213-226.
- Waite, W.F., Winters, W.J. and Mason, D.H., 2004. Methane hydrate formation in partially
- water-saturated Ottawa sand. Am. Mineral., 89: 1202-1207.
- Wempe, W., 2000. Predicting Flow Properties Using Geophysical Data - Improving Aquifer
- Characterization. Ph.D. thesis, Stanford University.
- Winters, W.J., Pecher, I.A., Waite, W.F. and Mason, D.H., 2004. Physical properties and
- rock-physics models of sediment containing natural and laboratory-formed methane gas
- hydrate. Am. Mineral., 89: 1221-1227.
- Wood, W.T., Stoffa, P.L. and Shipley, T.H., 1994. Quantitative detection of methane hydrate
- through high-resolution seismic velocity analysis. J. Geophys. Res., 99: 9681-9695.
- 386 SAVA & HARDAGE
- Yuan, T.S., Hyndman, G.D., Spence, G.D. and Desmons, B., 1996. Seismic velocity increase and
- deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern
- Cascadia continental slope. J. Geophys. Res., 101: 13655-13671.
- Yun, T.S., Francisca, F.M., Santamarina, J.C. and Ruppel, C., 2005. Compressional and shear
- wave velocities in uncemented sediment containing gas hydrate. Geophys. Res. Lett., 32:
- L10609-L10613.
- Zillmer, M., 2006. A method for determining gas-hydrate or free-gas saturation of porous media
- from seismic measurements. Geophysics, 71: N21-N32.
- Zimmer, M.A., 2003. Controls on the Seismic Velocities of Unconsolidated Sands: Measurements
- of Pressure, Porosity and Compaction Effects. Ph.D. thesis, Stanford University.
- SUBJECT INDEX, Volume 19, 2010
- absorbing boundary conditions 1, 2, 9, 18, 19, 37, 122, 130, 175, 185, 186
- absorption 1, 2, 4, 9, 12, 13, 18, 104, 119, 185
- acoustic modeling 19, 174, 182, 185
- adaptive mesh refinement 122-124, 127, 135, 136
- aliasing 280, 282-284, 290, 295-297, 299, 301, 322, 340, 343
- anisotropy 3-5, 19, 22, 23, 32, 37, 40, 44, 45, 53, 58, 64-69, 188, 189, 200, 202,
- 203, 223-225, 227, 349, 350, 354, 356, 358, 359, 364, 365, 370, 371,
- azimuthal anisotropy 188, 189, 200, 202
- basis pursuit 304, 307, 320
- Biot/squirt mechanism 1, 4, 19
- boundary conditions 1-3, 9, 14, 15, 18, 19, 22, 37, 122, 130, 175, 185, 186, 208,
- Bowers equation 142, 150-152, 154, 157
- carbonate reservoir 65, 86, 142
- channel analysis 162, 163
- conjugate gradients 321, 322, 326, 329, 335, 345, 346, 348
- crack density 43-48, 51-54, 57-65, 67
- damped least-squares 322
- data regularization 321, 322
- deep-water 264, 371-373, 375, 383
- density 4, 8, 24, 28, 43-49, 51-55, 57-65, 67, 78, 79, 85, 89, 128, 130, 142,
- 143-145, 150, 152, 153, 157, 176, 178, 210, 232, 235, 236, 237-242,
- 244-247, 249, 251-253, 255, 256, 273, 284, 285, 378, 381
- difference image 280, 292
- dipole sonic logs 87, 88, 92, 96, 99-102, 236
- effective pressure 142, 143, 150-154, 157, 373, 375, 377, 378, 380, 381
- elastic properties 45, 47, 50, 56, 58, 59, 66-69, 237, 350, 371, 377, 378, 379-381,
- elastic tensor 44, 58
- EMD 161-166, 169-172
- error function 249, 253, 254, 257, 259-262
- finite-difference 1, 3, 6, 7, 18, 19, 22, 23, 40, 41, 69, 136, 174, 176, 177, 178,
- 185, 186, 208-214, 216, 218, 220-222, 225, 226, 282, 283, 284, 286
- fluids 5, 40, 70, 72, 79, 85, 141, 378, 384
- fractured 45-48, 67-70, 72, 76, 86, 371
- gas hydrates 271, 279, 371-373, 377, 384, 385
- Gaussian 70, 73, 75, 76, 85, 146, 147, 178, 240, 249-251, 253, 255, 256, 257-261,
- 273, 326, 380, 381
- Gaussian kernel function 70
- geological pattern 304
- geostatistics 142, 159
- Gulf of Mexico 264, 265, 279, 371, 372, 374, 376, 378, 380, 382-384
- heavy oil 88, 96, 100-102, 158, 231, 232, 236, 248
- high-resolution algorithm 122
- hydrate 263-266, 269, 271-279, 371-374, 376-386
- image ray 187, 188, 192-194, 197, 205
- instantaneous frequency 161-171, 238, 241
- internal multiples 103-109, 111, 114, 117, 120, 131
- interpolation 24-26, 41, 42, 145, 148, 302, 308, 322, 323, 336, 347, 348
- inverse scattering 103-105, 117, 120, 121
- inversion 44, 45, 57, 65, 78, 104-106, 120-122, 143, 158, 203, 208, 226, 232, 235,
- 238-241, 247, 264, 265, 271-275, 277, 278, 304, 305-307, 311-313,
- 315, 320, 321, 324, 327, 332, 322, 323, 326, 329, 335, 347, 348,
- 370, 371, 384, 385
- kriging 87, 88, 101, 102, 142, 145-148, 154, 155
- linearized methods 349, 350
- matching pursuit 85, 86, 304, 306-309, 311, 320, 321
- modeling 1-4, 9, 10, 18, 19, 40, 41, 44, 45, 67, 68, 110, 121, 122, 134, 135, 160,
- 174-178, 182, 185, 186, 209, 226, 227, 273, 277, 279, 284, 287, 297,
- 301, 302, 321, 348, 349, 367, 371, 372, 377, 380, 382-385
- modified NAD algorithm 21, 22, 24
- multi-azimuth surveys 188
- nearly perfectly matched layer 174, 175, 185
- neural network 102, 231, 232, 238, 240, 241, 245, 247, 248
- NMO ellipse 188, 189, 194, 198, 205, 206
- NMO-stretch effect 280, 295, 298, 299, 301
- numerical dispersion 21-24, 26-29, 31-34, 40, 122, 131, 133, 208-210, 215, 217,
- 218, 221-223, 225, 226
- numerical modeling 1-3, 9, 19, 122, 135, 175, 176, 227
- Nyquist sampling theorem 280, 282-284
- ocean-bottom-cable 264
- P-P 264, 265, 267-271, 277, 278
- P-SV 19, 41, 186, 264, 265, 267-270, 277, 278
- pore pressure prediction 141-145, 148, 156, 157, 159, 160
- poroelastic media 1, 3, 9, 17, 19, 185, 186, 227
- probability density 249, 251-253, 273
- random heterogeneous media 280-282, 284, 299, 302
- ray tracing 194, 198, 350-352, 361, 363, 364, 367-369, 371
- reflectivity 87-90, 92-96, 98, 99, 102, 239, 241, 242, 265, 267, 279, 304, 305-307,
- 311-313, 315, 321, 327
- regularization 304-306, 327, 321-324, 329, 338, 343-345, 347, 348
- rock-physics 273, 371, 372, 377, 380, 383, 385, 386
- sandstone reservoir 70
- scattering 55, 66, 68, 103-105, 117, 120, 121, 224, 225, 280-282, 284, 287, 290,
- 293, 295, 300-302
- sign-bit data 249, 250
- sparse spike inversion 304
- spatial sampling 23, 28, 280, 282-285, 288-291, 295-297, 299-302, 323
- spectral attenuation 70, 72, 85
- stacking velocity 141, 142, 144, 145, 148, 158
- staggered-grid 1, 3, 6, 7, 18, 19, 23, 174, 176-178, 186
- thickness variation 161-163, 166, 168, 170, 171
- thin bed 87, 161, 162, 168-171, 308
- time migration 141, 144, 145, 187-189, 192-198, 200, 202, 203, 205, 206, 235, 302
- time-lapse 280, 300, 302
- transmission losses 104, 106, 110, 111, 113, 115-117, 120
- travel times 122, 271, 349, 350, 366-370
- truncation artifact 280, 296, 297, 299, 301
- TTI media 208-211, 215-224, 226
- unsplit convolutional perfectly matched layer 19, 174, 175, 185
- variance 145, 249, 252, 256
- variography 142, 145, 146
- velocity analysis 142, 144, 148, 187-189, 195, 197, 201, 203, 271, 276, 279, 338,
- 379, 384, 386
- V,/Vs 67, 87, 88, 96, 99-103, 231, 232, 235-248, 264, 269, 271, 377
- wave equation redatum 322
- wave equation statics 322
- wave propagation 1, 3, 5, 9, 17-19, 21-23, 26, 40, 41, 67, 69, 121-124, 128-130,
- 133-139, 174, 176, 178-181, 185, 186, 208, 209-211, 215, 216, 222,
- 223, 226, 227, 281, 301, 302, 323, 341, 349, 350, 352
- wavefield simulation 22, 32, 41, 208, 225
- wavelets 71, 87, 88, 91, 92, 95, 96, 99, 101-103, 123, 136, 287, 295, 296, 320
- weighted-averaging 208-219, 221-223, 226, 229
- weighting coefficients 208, 211-218
- Wigner-Ville distribution 70, 71, 86
- JOURNAL OF
- SEISMIC EXPLORATION
- Volume 19
- Number 1, January 2010
- J. Chen, R.P. Bording, E. Liu
- Z. Zhang and J. Badal
- D. Yang, G. Song and J. Zhang
- Y. Hu and G.A. McMechan
- X. Wu And T. Liu
- L.R. Lines, P.F. Daley
- and L. Ibna-Hamid
- CONTENTS
- The application of the nearly
- optimal sponge boundary conditions
- for seismic wave propagation
- in poroelastic media .........
- A modified NAD algorithm with
- minimum numerical dispersion
- for simulation of anisotropic
- wave propagation ...........
- Theoretical elastic stiffness
- tensor models at high crack
- Oc CSS a) Uh aerate nesceeraseeepeerdar eer geestareertersetaetearaer
- Analysis of seismic spectral
- attenuation based on Wigner-Ville
- distribution for sandstone
- reservoir characterization
- - a case study from West Sichuan
- Depression, China...........
- The accuracy of dipole sonic
- logs and its implication for
- seismic interpretation .........
- Number 2, April 2010
- J.E.M. Lira, K.A. Innanen,
- A.B. Weglein and
- A.C. Ramirez
- T. Mi, J. Ma, H. Chauris
- and H. Yang
- E. Nosrat, A. Javaherian,
- M.R. Torabi and H.B. Asiri
- Y. Zhou, W. Chen, J. Gao
- and Y. He
- J. Chen, C. Zhang
- and R.P. Bording
- W. Sollner, I. Tsvankin
- and E. Filpo Ferreira da Silva
- Number 3, July 2010
- G. Wu, K. Liang and X. Yin
- C.C. Dumitrescu and L. Lines
- Correction of primary amplitudes
- for plane-wave transmission loss
- through an acoustic or absorptive
- overburden with the inverse
- scattering series internal multiple
- attenuation algorithm: an initial
- study and 1D numerical examples
- Multilevel adaptive mesh modeling
- for wave propagation in layered
- media ea erate
- Pore pressure prediction using
- 3D seismic velocity data: a case
- study, a carbonate oil field,
- WIITamE tarseettoeaea rece dattecsdetearaaeicoadt
- Empirical mode decomposition
- based instantaneous frequency
- and seismic thin-bed analysis ....
- Comparison between the nearly
- perfectly matched layer and
- unsplit convolutional perfectly
- matched layer methods using
- acoustic wave modeling .......
- Multi-azimuth prestack time
- migration for anisotropic, weakly
- heterogeneous media .........
- Frequency-domain weighted
- -averaging finite-difference
- numerical simulation of qP wave
- propagation in TTI media ......
- Integrated characterization of
- heavy oil reservoir using V,/V
- ratio and neural network analysis
- . 103
- . 231
- L.M. Houston, G.A. Glass
- and A.D. Dymnikov
- M.V. DeAngelo, D.C. Sava,
- B.A. Hardage and P.E. Murray
- J. Matsushima and O. Nishizawa
- Number 4, October 2010
- T. Nguyen and J. Castagna
- D.R. Smith, M.K. Sen
- and R.J. Ferguson
- P.F. Daley, E.S. Krebes
- and L.R. Lines
- D. Sava and B.A. Hardage
- Sign-bit amplitude recovery in
- Gaussian noise... ..........
- Integrated 2D 4-C OBC analysis
- for estimating hydrate concentra-
- tions, Green Canyon,
- Gulf of Mexico ............
- Difference image of seismic
- reflection sections with highly
- dense spatial sampling in random
- heterogeneous media
- High-resolution reflectivity
- 1DVETSIOI iets rateeere teeta
- Data regularization and datuming
- by conjugate gradients ........
- Travel times in TI media:
- a comparison of exact,
- approximate and linearized
- TetphgdlSs 让 和 二 让 和 二
- Evaluating marine gas-hydrate
- systems.
- Part I: Stochastic rock-physics
- models for electrical resistivity
- and seismic velocities of hydrate-
- bearing sediments
- Subject Index Vol. 19, 2010
- Contents Vol. 19, 2010