ARTICLE

Evaluating marine gas-hydrate systems Part I: stochastic rock-physics models for electrical resistivity and seismic velocities of hydrate-bearing sediments

DIANA SAVA BOB HARDAGE
Show Less
Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, U.S.A.,
JSE 2010, 19(4), 371–393;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sava, D. and Hardage, B.A., 2010. Evaluating marine gas-hydrate systems. Part I: Stochastic rock-physics models for electrical resistivity and seismic velocities of hydrate-bearing sediments. Journal of Seismic Exploration, 19: 371-386. There is an increased need for investigating marine gas-hydrate systems to estimate the magnitude of the energy resource represented by the hydrate and to identify any unstable seafloor conditions that may result from hydrate dissociation, which can jeopardize drilling activities. Deep-water gas-hydrate systems can be studied on large scales with geophysical techniques, such as seismic and electrical surveys. To evaluate near-seafloor gas-hydrate environments we first need to build rock-physics quantitative relations between measurable parameters, such as elastic and electrical properties of sediments containing hydrates, and gas-hydrate saturation. In this study we assume a model of isotropic, load-bearing hydrates, uniformly distributed in the near-seafloor sediments. This Part I of a 2-paper series presents a method for stochastic joint modeling of elastic properties and electrical resistivity of gas-hydrate sediments. The petrophysical parameters involved in the modeling are difficult to estimate and are uncertain. Therefore, probability distribution functions (PDFs) are used to account for the uncertainty associated with each of the petrophysical quantities involved in the modeling. Both electrical resistivity and seismic velocities depend on porosity of the sediments and hydrate concentration, and we refer to them as common model parameters. A Monte Carlo procedure is used to draw values for these common parameters from their associated PDFs and then compute the corresponding velocity and electrical resistivity values using Monte Carlo draws from the PDFs for each of the petrophysical parameters that are required for elastic modeling and for Archie equation for electrical resistivity. The outcome of this procedure is represented by many Monte Carlo realizations that jointly relate hydrate concentration, resistivity, and seismic propagation velocity. This joint relation varies with depth and it is non-unique and uncertain due to variability of the input parameters. These theoretical relations can then be used to estimate hydrate concentration in Green Canyon Gulf of Mexico through a joint inversion technique presented in the Part II.

Keywords
gas hydrates
rock-physics
elastic properties
modeling
Gulf of Mexico
References
  1. Allen, P. and Allen, J., 1990. Basin Analysis: Principles and applications. Blackwell Scientific
  2. Publications, Oxford.
  3. Archie, G.E., 1942. The electric resistivity log as an aid in determining some reservoir
  4. characteristics. Trans. AIME, 46: 54.
  5. Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophysics, 57: 1396-1408.
  6. Bayes, T., 1783. An essay towards solving a problem in the doctrine of chances, Phil. Trans. Roy.
  7. Soc., 53: 370-418.
  8. Berryman, J.G., 1995. Mixture theories for rock properties. In: Ahrens, U.J. (Ed.), Rock Physics
  9. and Phase Relations: A Handbook of Physical Constants. AGU, Washington, D.C. : 205-228.
  10. Carcione, J.M. and Tinivella, U., 2000. Bottom-simulating reflectors: Seismic velocities and AVO
  11. effects. Geophysics, 65: 54-67.
  12. Chand, S., Minshull, T.A., Gei, D. and Carcione, J.M., 2004. Elastic velocity models for
  13. gas-hydrate-bearing sediments-a comparison. Geophys. J. Int., 159: 573-590.
  14. Clavier, C., Coates, G. and Dumanoir, J., 1977. The Theoretical and Experimental Bases for the
  15. 'Dual Water' Model for the Interpretation of Shaly Sands. SPE 6859: 1-16.
  16. Collett, T.S., 1998. Well log evaluation of gas hydrate saturations. Transact. Soc. Profess. Well Log
  17. Analysts, 39th Ann. Logging Symp., Paper MM.
  18. Collett, T.S. (2001), A review of well-log analysis techniques used to assess gas-hydrate-bearing
  19. reservoirs. In: Natural Gas Hydrates: Occurrence, Distribution, and Detection. AGU
  20. Geophys. Monograph, 124: 189-210.
  21. DeAngelo, M.V., Murray, P.E., Hardage, B.A. and Remington, R.L., 2008. Integrated 2D 4-C
  22. OBC seismic velocity analysis of near-seafloor sediments, Green Canyon, Gulf of Mexico.
  23. Geophysics, 73: B109-B115.
  24. Dvorkin, J. and Nur, A., 1996. Elasticity of high-porosity sandstones: theory for two North Sea data
  25. sets. Geophysics, 61: 1363-1370.
  26. Dvorkin, J., Prasad, M., Sakai, A. and Lavoie, D., 1999. Elasticity of marine sediments. Geophys.
  27. Res. Lett., 26: 1781-1784.
  28. Ecker, C., Dvorkin, J. and Nur., A., 2000. Estimating the amount of gas hydrate and free gas from
  29. marine seismic data. Geophysics, 62: 565-573.
  30. Gassmann, F., 1951. On the elasticity of porous media. Vier. Natur. Gesellsch. Ziirich, 96: 1-23.
  31. Hardage, B.A., Roberts, H.H., Murray, P.E., Remington, R., Sava, D.C., Shedd W. and Hunt,
  32. J.Jr., 2010. Multicomponent seismic technology assessment of fluid-gas explosion geology,
  33. Gulf of Mexico. In: Collett, T., Johnson, A., Knapp, C. and Boswell, R. (Eds.), Natural
  34. Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards. AAPG Memoir
  35. 89: 247-265.
  36. Hashin, Z. and Shtrikman, S., 1962. A variational approach to the theory of effective magnetic
  37. permeability of multiphase materials. J. Appl. Phys., 33: 3125-3131.
  38. Hashin, Z. and Shtrikman, S., 1963. A variational approach to the elastic behavior of multiphase
  39. materials. J. Mech. Phys. Solids, 11: 127-140.
  40. Helgerud, M.B., Dvorkin, J., Nur, A., Sakai, A. and Collet, T., 1999. Elastic-wave velocity in
  41. marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett., 26:
  42. 2021-2024.
  43. MARINE GAS-HYDRATE SYSTEMS 385
  44. Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A. and Lizarralde, D. & Leg 164 Scientific
  45. Party, 1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic
  46. profiling. Science, 273: 1840-1843.
  47. Jackson, P.D., Taylor Smith, D. and Stanford, P.N., 1978. Resistivity-porosity-particle shape
  48. relationships for marine sands. Geophysics, 43: 1250.
  49. Kleinberg, R.L. and Dai, J., 2005. Estimation of the mechanical properties of natural gas hydrate
  50. deposits from petrophysical measurement. OTC, 17205, Offshore Technol. Conf., Houston,
  51. TX, May 2005.
  52. Lee, M.W., Hutchinson, D.R., Collet, T.S. and Dillon, W.P., 1996. Seismic velocities for hydrate
  53. bearing sediments using weighted equation. J. Geophys. Res., 101: 347-358.
  54. Lu, S. and McMechan, G.A., 2002. Estimation of gas hydrate and free gas saturation,
  55. concentration, and distribution from seismic data. Geophysics, 67: 582-593.
  56. Lu, S. and McMechan, G.A., 2004. Elastic impedance inversion of multichannel seismic data from
  57. unconsolidated sediments containing gas hydrate and free gas. Geophysics, 69: 164-179.
  58. Mavko G., Mukerji, T. and Dvorkin, J., 1998. The Rock Physics Handbook. Cambridge University
  59. Press, Cambridge.
  60. Mendelson, K.S. and Cohen, M.H., 1982. The effect of grain anisotropy on the electrical properties
  61. of sedimentary rocks. Geophysics, 47: 257-263.
  62. Miller, J.J., Lee, M.W. and von Huene, R., 1991. An analysis of seismic reflection from the base
  63. of a gas hydrate zone, offshore Peru. AAPG Bulletin, 75: 910-924.
  64. Mindlin, R.D., 1949. Compliance of elastic bodies in contact. J. Appl. Mech., 16: 259-268.
  65. Murray, D.R., Kleinberg, R.L., Sinha, B.K., Fukuhara, M., Osawa, O., Endo, T. and Namikawa,
  66. T., 2006. Saturation, acoustic properties, growth habit, and state of stress of a gas hydrate
  67. reservoir from well logs. Petrophysics, 47: 129-137.
  68. Nur, A., Mavko, G., Dvorkin, J. and Galmudi, D., 1998. Critical porosity: a key to relating
  69. physical properties to porosity in rocks. The Leading Edge, 17: 357-362.
  70. earson, C.F., Hallek, P.M., McGuire, P.L., Hermes, R. and Mathews, M., 1983. Natural gas
  71. hydrate deposits: a review of in-situ properties. J. Phys. Chem., 87: 4180-4185.
  72. Prasad, M. and Dvorkin, J., 2001. Velocity to porosity transform in marine
  73. sediments. Petrophys., 42: 429-437.
  74. Ramm, M. and Bjoerlykke, K., 1994. Porosity/depth trends in reservoir sandstones: assessing the
  75. quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian
  76. shelf data. Clay Miner., 29: 475-490.
  77. Rubey, W. and Hubbert, M.K., 1959. Role of fluid pressure in mechanics of overthrust faulting,
  78. II. Geol. Soc. Amer. Bull., 70: 167-206.
  79. Sava, D.C. and Hardage, B.A., 2006. Rock physics characterization of hydrate-bearing deepwater
  80. sediments. The Leading Edge, 25: 616-619.
  81. Sava, D.C. and Hardage, B.A., 2010. Rock-physics models for gas-hydrate systems associated with
  82. unconsolidated marine sediments. In: Collett, T., Johnson, A., Knapp, C. and Boswell, R.
  83. (Eds.), Natural Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards.
  84. AAPG Memoir 89: 505-524.
  85. Sloan, D.E. and Koh, C.A., 2008. Clathrate Hydrates of Natural Gases,. 3rd Ed., CRC Press, Boca
  86. Raton.
  87. Walton, K., 1987. The etfective elastic moduli of a random packing of spheres, J. Mech. Phys.
  88. Solids, 35: 213-226.
  89. Waite, W.F., Winters, W.J. and Mason, D.H., 2004. Methane hydrate formation in partially
  90. water-saturated Ottawa sand. Am. Mineral., 89: 1202-1207.
  91. Wempe, W., 2000. Predicting Flow Properties Using Geophysical Data - Improving Aquifer
  92. Characterization. Ph.D. thesis, Stanford University.
  93. Winters, W.J., Pecher, I.A., Waite, W.F. and Mason, D.H., 2004. Physical properties and
  94. rock-physics models of sediment containing natural and laboratory-formed methane gas
  95. hydrate. Am. Mineral., 89: 1221-1227.
  96. Wood, W.T., Stoffa, P.L. and Shipley, T.H., 1994. Quantitative detection of methane hydrate
  97. through high-resolution seismic velocity analysis. J. Geophys. Res., 99: 9681-9695.
  98. 386 SAVA & HARDAGE
  99. Yuan, T.S., Hyndman, G.D., Spence, G.D. and Desmons, B., 1996. Seismic velocity increase and
  100. deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern
  101. Cascadia continental slope. J. Geophys. Res., 101: 13655-13671.
  102. Yun, T.S., Francisca, F.M., Santamarina, J.C. and Ruppel, C., 2005. Compressional and shear
  103. wave velocities in uncemented sediment containing gas hydrate. Geophys. Res. Lett., 32:
  104. L10609-L10613.
  105. Zillmer, M., 2006. A method for determining gas-hydrate or free-gas saturation of porous media
  106. from seismic measurements. Geophysics, 71: N21-N32.
  107. Zimmer, M.A., 2003. Controls on the Seismic Velocities of Unconsolidated Sands: Measurements
  108. of Pressure, Porosity and Compaction Effects. Ph.D. thesis, Stanford University.
  109. SUBJECT INDEX, Volume 19, 2010
  110. absorbing boundary conditions 1, 2, 9, 18, 19, 37, 122, 130, 175, 185, 186
  111. absorption 1, 2, 4, 9, 12, 13, 18, 104, 119, 185
  112. acoustic modeling 19, 174, 182, 185
  113. adaptive mesh refinement 122-124, 127, 135, 136
  114. aliasing 280, 282-284, 290, 295-297, 299, 301, 322, 340, 343
  115. anisotropy 3-5, 19, 22, 23, 32, 37, 40, 44, 45, 53, 58, 64-69, 188, 189, 200, 202,
  116. 203, 223-225, 227, 349, 350, 354, 356, 358, 359, 364, 365, 370, 371,
  117. azimuthal anisotropy 188, 189, 200, 202
  118. basis pursuit 304, 307, 320
  119. Biot/squirt mechanism 1, 4, 19
  120. boundary conditions 1-3, 9, 14, 15, 18, 19, 22, 37, 122, 130, 175, 185, 186, 208,
  121. Bowers equation 142, 150-152, 154, 157
  122. carbonate reservoir 65, 86, 142
  123. channel analysis 162, 163
  124. conjugate gradients 321, 322, 326, 329, 335, 345, 346, 348
  125. crack density 43-48, 51-54, 57-65, 67
  126. damped least-squares 322
  127. data regularization 321, 322
  128. deep-water 264, 371-373, 375, 383
  129. density 4, 8, 24, 28, 43-49, 51-55, 57-65, 67, 78, 79, 85, 89, 128, 130, 142,
  130. 143-145, 150, 152, 153, 157, 176, 178, 210, 232, 235, 236, 237-242,
  131. 244-247, 249, 251-253, 255, 256, 273, 284, 285, 378, 381
  132. difference image 280, 292
  133. dipole sonic logs 87, 88, 92, 96, 99-102, 236
  134. effective pressure 142, 143, 150-154, 157, 373, 375, 377, 378, 380, 381
  135. elastic properties 45, 47, 50, 56, 58, 59, 66-69, 237, 350, 371, 377, 378, 379-381,
  136. elastic tensor 44, 58
  137. EMD 161-166, 169-172
  138. error function 249, 253, 254, 257, 259-262
  139. finite-difference 1, 3, 6, 7, 18, 19, 22, 23, 40, 41, 69, 136, 174, 176, 177, 178,
  140. 185, 186, 208-214, 216, 218, 220-222, 225, 226, 282, 283, 284, 286
  141. fluids 5, 40, 70, 72, 79, 85, 141, 378, 384
  142. fractured 45-48, 67-70, 72, 76, 86, 371
  143. gas hydrates 271, 279, 371-373, 377, 384, 385
  144. Gaussian 70, 73, 75, 76, 85, 146, 147, 178, 240, 249-251, 253, 255, 256, 257-261,
  145. 273, 326, 380, 381
  146. Gaussian kernel function 70
  147. geological pattern 304
  148. geostatistics 142, 159
  149. Gulf of Mexico 264, 265, 279, 371, 372, 374, 376, 378, 380, 382-384
  150. heavy oil 88, 96, 100-102, 158, 231, 232, 236, 248
  151. high-resolution algorithm 122
  152. hydrate 263-266, 269, 271-279, 371-374, 376-386
  153. image ray 187, 188, 192-194, 197, 205
  154. instantaneous frequency 161-171, 238, 241
  155. internal multiples 103-109, 111, 114, 117, 120, 131
  156. interpolation 24-26, 41, 42, 145, 148, 302, 308, 322, 323, 336, 347, 348
  157. inverse scattering 103-105, 117, 120, 121
  158. inversion 44, 45, 57, 65, 78, 104-106, 120-122, 143, 158, 203, 208, 226, 232, 235,
  159. 238-241, 247, 264, 265, 271-275, 277, 278, 304, 305-307, 311-313,
  160. 315, 320, 321, 324, 327, 332, 322, 323, 326, 329, 335, 347, 348,
  161. 370, 371, 384, 385
  162. kriging 87, 88, 101, 102, 142, 145-148, 154, 155
  163. linearized methods 349, 350
  164. matching pursuit 85, 86, 304, 306-309, 311, 320, 321
  165. modeling 1-4, 9, 10, 18, 19, 40, 41, 44, 45, 67, 68, 110, 121, 122, 134, 135, 160,
  166. 174-178, 182, 185, 186, 209, 226, 227, 273, 277, 279, 284, 287, 297,
  167. 301, 302, 321, 348, 349, 367, 371, 372, 377, 380, 382-385
  168. modified NAD algorithm 21, 22, 24
  169. multi-azimuth surveys 188
  170. nearly perfectly matched layer 174, 175, 185
  171. neural network 102, 231, 232, 238, 240, 241, 245, 247, 248
  172. NMO ellipse 188, 189, 194, 198, 205, 206
  173. NMO-stretch effect 280, 295, 298, 299, 301
  174. numerical dispersion 21-24, 26-29, 31-34, 40, 122, 131, 133, 208-210, 215, 217,
  175. 218, 221-223, 225, 226
  176. numerical modeling 1-3, 9, 19, 122, 135, 175, 176, 227
  177. Nyquist sampling theorem 280, 282-284
  178. ocean-bottom-cable 264
  179. P-P 264, 265, 267-271, 277, 278
  180. P-SV 19, 41, 186, 264, 265, 267-270, 277, 278
  181. pore pressure prediction 141-145, 148, 156, 157, 159, 160
  182. poroelastic media 1, 3, 9, 17, 19, 185, 186, 227
  183. probability density 249, 251-253, 273
  184. random heterogeneous media 280-282, 284, 299, 302
  185. ray tracing 194, 198, 350-352, 361, 363, 364, 367-369, 371
  186. reflectivity 87-90, 92-96, 98, 99, 102, 239, 241, 242, 265, 267, 279, 304, 305-307,
  187. 311-313, 315, 321, 327
  188. regularization 304-306, 327, 321-324, 329, 338, 343-345, 347, 348
  189. rock-physics 273, 371, 372, 377, 380, 383, 385, 386
  190. sandstone reservoir 70
  191. scattering 55, 66, 68, 103-105, 117, 120, 121, 224, 225, 280-282, 284, 287, 290,
  192. 293, 295, 300-302
  193. sign-bit data 249, 250
  194. sparse spike inversion 304
  195. spatial sampling 23, 28, 280, 282-285, 288-291, 295-297, 299-302, 323
  196. spectral attenuation 70, 72, 85
  197. stacking velocity 141, 142, 144, 145, 148, 158
  198. staggered-grid 1, 3, 6, 7, 18, 19, 23, 174, 176-178, 186
  199. thickness variation 161-163, 166, 168, 170, 171
  200. thin bed 87, 161, 162, 168-171, 308
  201. time migration 141, 144, 145, 187-189, 192-198, 200, 202, 203, 205, 206, 235, 302
  202. time-lapse 280, 300, 302
  203. transmission losses 104, 106, 110, 111, 113, 115-117, 120
  204. travel times 122, 271, 349, 350, 366-370
  205. truncation artifact 280, 296, 297, 299, 301
  206. TTI media 208-211, 215-224, 226
  207. unsplit convolutional perfectly matched layer 19, 174, 175, 185
  208. variance 145, 249, 252, 256
  209. variography 142, 145, 146
  210. velocity analysis 142, 144, 148, 187-189, 195, 197, 201, 203, 271, 276, 279, 338,
  211. 379, 384, 386
  212. V,/Vs 67, 87, 88, 96, 99-103, 231, 232, 235-248, 264, 269, 271, 377
  213. wave equation redatum 322
  214. wave equation statics 322
  215. wave propagation 1, 3, 5, 9, 17-19, 21-23, 26, 40, 41, 67, 69, 121-124, 128-130,
  216. 133-139, 174, 176, 178-181, 185, 186, 208, 209-211, 215, 216, 222,
  217. 223, 226, 227, 281, 301, 302, 323, 341, 349, 350, 352
  218. wavefield simulation 22, 32, 41, 208, 225
  219. wavelets 71, 87, 88, 91, 92, 95, 96, 99, 101-103, 123, 136, 287, 295, 296, 320
  220. weighted-averaging 208-219, 221-223, 226, 229
  221. weighting coefficients 208, 211-218
  222. Wigner-Ville distribution 70, 71, 86
  223. JOURNAL OF
  224. SEISMIC EXPLORATION
  225. Volume 19
  226. Number 1, January 2010
  227. J. Chen, R.P. Bording, E. Liu
  228. Z. Zhang and J. Badal
  229. D. Yang, G. Song and J. Zhang
  230. Y. Hu and G.A. McMechan
  231. X. Wu And T. Liu
  232. L.R. Lines, P.F. Daley
  233. and L. Ibna-Hamid
  234. CONTENTS
  235. The application of the nearly
  236. optimal sponge boundary conditions
  237. for seismic wave propagation
  238. in poroelastic media .........
  239. A modified NAD algorithm with
  240. minimum numerical dispersion
  241. for simulation of anisotropic
  242. wave propagation ...........
  243. Theoretical elastic stiffness
  244. tensor models at high crack
  245. Oc CSS a) Uh aerate nesceeraseeepeerdar eer geestareertersetaetearaer
  246. Analysis of seismic spectral
  247. attenuation based on Wigner-Ville
  248. distribution for sandstone
  249. reservoir characterization
  250. - a case study from West Sichuan
  251. Depression, China...........
  252. The accuracy of dipole sonic
  253. logs and its implication for
  254. seismic interpretation .........
  255. Number 2, April 2010
  256. J.E.M. Lira, K.A. Innanen,
  257. A.B. Weglein and
  258. A.C. Ramirez
  259. T. Mi, J. Ma, H. Chauris
  260. and H. Yang
  261. E. Nosrat, A. Javaherian,
  262. M.R. Torabi and H.B. Asiri
  263. Y. Zhou, W. Chen, J. Gao
  264. and Y. He
  265. J. Chen, C. Zhang
  266. and R.P. Bording
  267. W. Sollner, I. Tsvankin
  268. and E. Filpo Ferreira da Silva
  269. Number 3, July 2010
  270. G. Wu, K. Liang and X. Yin
  271. C.C. Dumitrescu and L. Lines
  272. Correction of primary amplitudes
  273. for plane-wave transmission loss
  274. through an acoustic or absorptive
  275. overburden with the inverse
  276. scattering series internal multiple
  277. attenuation algorithm: an initial
  278. study and 1D numerical examples
  279. Multilevel adaptive mesh modeling
  280. for wave propagation in layered
  281. media ea erate
  282. Pore pressure prediction using
  283. 3D seismic velocity data: a case
  284. study, a carbonate oil field,
  285. WIITamE tarseettoeaea rece dattecsdetearaaeicoadt
  286. Empirical mode decomposition
  287. based instantaneous frequency
  288. and seismic thin-bed analysis ....
  289. Comparison between the nearly
  290. perfectly matched layer and
  291. unsplit convolutional perfectly
  292. matched layer methods using
  293. acoustic wave modeling .......
  294. Multi-azimuth prestack time
  295. migration for anisotropic, weakly
  296. heterogeneous media .........
  297. Frequency-domain weighted
  298. -averaging finite-difference
  299. numerical simulation of qP wave
  300. propagation in TTI media ......
  301. Integrated characterization of
  302. heavy oil reservoir using V,/V
  303. ratio and neural network analysis
  304. . 103
  305. . 231
  306. L.M. Houston, G.A. Glass
  307. and A.D. Dymnikov
  308. M.V. DeAngelo, D.C. Sava,
  309. B.A. Hardage and P.E. Murray
  310. J. Matsushima and O. Nishizawa
  311. Number 4, October 2010
  312. T. Nguyen and J. Castagna
  313. D.R. Smith, M.K. Sen
  314. and R.J. Ferguson
  315. P.F. Daley, E.S. Krebes
  316. and L.R. Lines
  317. D. Sava and B.A. Hardage
  318. Sign-bit amplitude recovery in
  319. Gaussian noise... ..........
  320. Integrated 2D 4-C OBC analysis
  321. for estimating hydrate concentra-
  322. tions, Green Canyon,
  323. Gulf of Mexico ............
  324. Difference image of seismic
  325. reflection sections with highly
  326. dense spatial sampling in random
  327. heterogeneous media
  328. High-resolution reflectivity
  329. 1DVETSIOI iets rateeere teeta
  330. Data regularization and datuming
  331. by conjugate gradients ........
  332. Travel times in TI media:
  333. a comparison of exact,
  334. approximate and linearized
  335. TetphgdlSs 让 和 二 让 和 二
  336. Evaluating marine gas-hydrate
  337. systems.
  338. Part I: Stochastic rock-physics
  339. models for electrical resistivity
  340. and seismic velocities of hydrate-
  341. bearing sediments
  342. Subject Index Vol. 19, 2010
  343. Contents Vol. 19, 2010
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing