ARTICLE

Data regularization and datuming by conjugate gradients

DANIEL R. SMITH1 MRINAL K. SEN2 ROBERT J. FERGUSON3
Show Less
1 Hess Corporation, 500 Dallas St., Houston, TX 77002, U.S.A.,
2 John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X Austin, TX 78713-8972, U.S.A.,
3 Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary, Canada T2N 1N4.,
JSE 2010, 19(4), 321–347;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Smith, D.R., Sen, M.K. and Ferguson, R.J., 2010. Data regularization and datuming by conjugate gradients. Journal of Seismic Exploration, 19: 321-347. Irregular spacing of seismic sources and receivers, and strong topographic variations plus velocity heterogeneity, cause spatial and temporal irregularity in seismic data. Because so much of seismic processing, imaging. and inversion relies on the Fast Fourier transform for efficiency, and because seismic modelling requires continuous reflectors for analysis, seismic regularization is desirable. Here, we address spatial and temporal irregularity simultaneously. We use weighted, damped least-squares to extrapolate data from an irregularly sampled, topographic surface to a regularly sampled datum. This process requires an accurate velocity model of the near-surface, and it returns seismic traces with a constant trace-to-trace distance and more continuous reflection events. As an inverse problem, the Hessian in process is costly to compute, so the method of conjugate gradients (CG) are employed so that the required matrix-matrix multiplication is reduced to two matrix-vector multiplications. We find that use of the CG method reduces the total number of multiplication operations from O(n°) for the direct solution to O(n’) where n is the number of trace locations.

Keywords
conjugate gradients
data regularization
seismic interpolation
damped least-squares
seismic inversion
wave equation statics
wave equation redatum
References
  1. Akcadogan, C. and Dag, 2003. A parallel implementation of Chebyshev preconditioned conjugate
  2. gradient method. Expanded Abstr., 2nd Internat. Symp. Parallel Distrib. Comput., IEEE:
  3. 1-8.
  4. Berkhout, A.J., 1981. Wave-field extrapolation techniques in seismic migration, a tutorial.
  5. Geophysics, 46: 1638-1656.
  6. Berkhout, A.J. and Verschuur, D.J., 2005. Inverse data processing, a paradigm shift?. Expanded
  7. Abstr., 75th Ann. Internat. SEG Mtg., Houston: 2099-2102.
  8. Berryhill, J.R., 1979. Wave equation datuming. Geophysics, 44: 1329-1344.
  9. Bevc, D., 1997. Flooding the topography: Wave-equation datuming of land data with rugged
  10. acquisition topography. Geophysics, 62: 1558-1569.
  11. Bobrovnikova, E.Y. and Vavasis, S.A., 2001. Accurate solution of weighted least squares by
  12. iterative methods. J. Matrix Analys. Applic., 22: 1153-1174.
  13. Cox, M., 1999. Static Corrections for Seismic Reflection Surveys. SEG, Tulsa, OK.
  14. Duijndam, A.J.W., Schonewille, M.A. and Hindriks, C.O.H., 1999. Reconstruction of band-limited
  15. signals, irregularly sampled along one spatial direction. Geophysics, 64: 524-538.
  16. Etgen, J.T., 1994. Stability of explicit depth extrapolation through laterally-varying media. Expanded
  17. Abstr., 64th Ann. Internat. SEG Mtg., Los Angeles: 1266-1269.
  18. Ferguson, R.J., 2006. Regularization and datuming of seismic data by weighted, damped least
  19. squares. Geophysics, 71: U67-U76.
  20. Gazdag, J. and Sguazzero, P., 1984. Migration of seismic data by phase shift plus interpolation.
  21. Geophysics, 49: 124-131
  22. Golub, G.H. and van Loan, C.F., 1996. Matrix Computations. John Hopkins Univ.
  23. Hanke, M., 1995. Conjugate Gradient Type Methods for Il-posed Problems. Longman Scientific
  24. and Technical, Essex.
  25. Hansen, P.C., 1994. Regularization tools, a matlab package for analysis and solution of discrete
  26. ill-posed problems. Numeric. Algor., 6: 1-35.
  27. Kelamis, P.G., Erickson, K.E., Verschuur, D.J. and Berkhout, A.J., 2002. Velocity-independent
  28. redatuming: A new approach to the near-surface problem in land seismic data processing.
  29. Geophysics, 21: 730-735.
  30. Kiihl, H. and Sacchi, M.D., 2003. Least-squares wave-equation migration for avp/ava inversion.
  31. Geophysics, 68: 262-273.
  32. Mackie, R.L. and Madden, T.R., 1993. Three-dimensional magnetotelluric inversion using conjugate
  33. gradients. Geophys. J. Internat., 115: 215-229.
  34. Margrave, G.F. and Ferguson, R.J., 1999. Wavefield extrapolation by nonstationary phase shift.
  35. Geophysics, 64: 1067-1078.
  36. Mou-Yan, Z. and Unbehauen, R., 1995. A weighted space restoration algorithm using the aperiodic
  37. model of deconvolution. 8th Ann. [EEE Symp. Computer-Based Medic. Syst., CBMS: 308-
  38. Nocedal, J. and Wright, S.J., 1999, Numerical Optimization. Springer Science & Business Media,
  39. Inc., New York.
  40. Paige, C.C. and Saunders, M.A., 1982. LSQR: An algorithm for sparse linear equations and sparse
  41. least squares. ACM Transact. Mathem. Software, 8: 43-71.
  42. Reshef, M., 1991. Depth migration from irregular surfaces with depth extrapolation methods.
  43. Geophysics, 56: 119-122.
  44. DATA REGULARIZATION 347
  45. Ronen, J., 1987. Wave equation trace interpolation. Geophysics, 52: 973-984.
  46. Sacchi, M.D. and Liu, B., 2005. Minimum weighted norm wavefield reconstruction for ava
  47. imaging. Geophys. Prosp., 53: 787-801.
  48. Schneider, M.K. and Willsky, A.S., 2001. Krylov subspace estimation. SIAM J. Scientif. Comput.,
  49. 22: 1840-1864.
  50. Shewchuk, J.R., 1994. An introduction to the conjugate gradient method without the agonizing pain.
  51. Technical paper, School of Computer Science, Carnegie Mellon Univ.
  52. Shtivelman, V. and Canning, A., 1988. Datum correction by wave equation extrapolation.
  53. Geophysics, 53: 1311-1322.
  54. Spitz, S., 1991. Seismic trace interpolation in the f-x domain. Geophysics, 56: 785-794.
  55. Stork, C., 1994. Demonstration of mva tomography with controls and constraints for determining
  56. and accurate velocity model for prestack depth migration. Expanded Abstr., 64th Ann.
  57. Internat. SEG Mtg., Los Angeles: 1338-1342.
  58. Stork, C., Welsh, C. and Skuce, A., 1995. Demonstration of processing and model building
  59. methods on a real complex structure data set. Workshop #6, Ann. Internat. SEG Mtg.,
  60. Houston.
  61. Taner, M.T., Berkhout, A.J., Treitel, S. and Kelamis, P.G., 1982. The dynamics of statics. The
  62. Leading Edge, 26: 396-402.
  63. Taner, M.T. and Koehler, F., 2002. Surface consistent corrections. Geophysics, 46: 17-22.
  64. Tarantola, A., 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter
  65. Estimation. Elsevier Science Publishers, Inc., New York.
  66. van den Eshof, J. and Sleijpen, G.L.G., 2004. Accurate conjugate gradient methods for families of
  67. shifted systems. Appl. Numer. Mathemat., 49: 17-37.
  68. Yang, Q., Vogel, C.R. and Ellerbroek, B.L., 2006. Fourier domain preconditioned conjugate
  69. gradient algorithm for atmospheric tomography. Appl. Optics, 45: 5281-5293.
  70. Youmaran, R. and Adler, A., 2004. Combining regularization frameworks for image deblurring:
  71. Optimization of combined hyper-parameters. Expanded Abstr., Can. Conf. Electric. Comput.
  72. Engin., IEEE Comput. Soc.: 723-726.
  73. Zhang, J., Mackie, R.L. and Madden, T.R., 1995. 3-D resistivity forward modeling and inversion
  74. using conjugate gradients. Geophysics, 60: 1313-1325.
  75. Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods in
  76. Geochemistry and Geophysics, Vol. 36, Ist ed. Elsevier Science Publishers, Amsterdam.
  77. Zhu, X., Sixta, D.P. and Angstman, B.G., 1992. Tomostatics: Turning-ray tomography + static
  78. corrections. The Leading Edge, 11: 15-23.
  79. Zwartjes, P.M. and Sacchi, M.D., 2004. Fourier reconstruction of non-uniformly sampled, aliased
  80. data. Expanded Abstr., 74th Ann. Internat. SEG Mtg.,Denver: 1997-2000.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing