Data regularization and datuming by conjugate gradients

Smith, D.R., Sen, M.K. and Ferguson, R.J., 2010. Data regularization and datuming by conjugate gradients. Journal of Seismic Exploration, 19: 321-347. Irregular spacing of seismic sources and receivers, and strong topographic variations plus velocity heterogeneity, cause spatial and temporal irregularity in seismic data. Because so much of seismic processing, imaging. and inversion relies on the Fast Fourier transform for efficiency, and because seismic modelling requires continuous reflectors for analysis, seismic regularization is desirable. Here, we address spatial and temporal irregularity simultaneously. We use weighted, damped least-squares to extrapolate data from an irregularly sampled, topographic surface to a regularly sampled datum. This process requires an accurate velocity model of the near-surface, and it returns seismic traces with a constant trace-to-trace distance and more continuous reflection events. As an inverse problem, the Hessian in process is costly to compute, so the method of conjugate gradients (CG) are employed so that the required matrix-matrix multiplication is reduced to two matrix-vector multiplications. We find that use of the CG method reduces the total number of multiplication operations from O(n°) for the direct solution to O(n’) where n is the number of trace locations.
- Akcadogan, C. and Dag, 2003. A parallel implementation of Chebyshev preconditioned conjugate
- gradient method. Expanded Abstr., 2nd Internat. Symp. Parallel Distrib. Comput., IEEE:
- 1-8.
- Berkhout, A.J., 1981. Wave-field extrapolation techniques in seismic migration, a tutorial.
- Geophysics, 46: 1638-1656.
- Berkhout, A.J. and Verschuur, D.J., 2005. Inverse data processing, a paradigm shift?. Expanded
- Abstr., 75th Ann. Internat. SEG Mtg., Houston: 2099-2102.
- Berryhill, J.R., 1979. Wave equation datuming. Geophysics, 44: 1329-1344.
- Bevc, D., 1997. Flooding the topography: Wave-equation datuming of land data with rugged
- acquisition topography. Geophysics, 62: 1558-1569.
- Bobrovnikova, E.Y. and Vavasis, S.A., 2001. Accurate solution of weighted least squares by
- iterative methods. J. Matrix Analys. Applic., 22: 1153-1174.
- Cox, M., 1999. Static Corrections for Seismic Reflection Surveys. SEG, Tulsa, OK.
- Duijndam, A.J.W., Schonewille, M.A. and Hindriks, C.O.H., 1999. Reconstruction of band-limited
- signals, irregularly sampled along one spatial direction. Geophysics, 64: 524-538.
- Etgen, J.T., 1994. Stability of explicit depth extrapolation through laterally-varying media. Expanded
- Abstr., 64th Ann. Internat. SEG Mtg., Los Angeles: 1266-1269.
- Ferguson, R.J., 2006. Regularization and datuming of seismic data by weighted, damped least
- squares. Geophysics, 71: U67-U76.
- Gazdag, J. and Sguazzero, P., 1984. Migration of seismic data by phase shift plus interpolation.
- Geophysics, 49: 124-131
- Golub, G.H. and van Loan, C.F., 1996. Matrix Computations. John Hopkins Univ.
- Hanke, M., 1995. Conjugate Gradient Type Methods for Il-posed Problems. Longman Scientific
- and Technical, Essex.
- Hansen, P.C., 1994. Regularization tools, a matlab package for analysis and solution of discrete
- ill-posed problems. Numeric. Algor., 6: 1-35.
- Kelamis, P.G., Erickson, K.E., Verschuur, D.J. and Berkhout, A.J., 2002. Velocity-independent
- redatuming: A new approach to the near-surface problem in land seismic data processing.
- Geophysics, 21: 730-735.
- Kiihl, H. and Sacchi, M.D., 2003. Least-squares wave-equation migration for avp/ava inversion.
- Geophysics, 68: 262-273.
- Mackie, R.L. and Madden, T.R., 1993. Three-dimensional magnetotelluric inversion using conjugate
- gradients. Geophys. J. Internat., 115: 215-229.
- Margrave, G.F. and Ferguson, R.J., 1999. Wavefield extrapolation by nonstationary phase shift.
- Geophysics, 64: 1067-1078.
- Mou-Yan, Z. and Unbehauen, R., 1995. A weighted space restoration algorithm using the aperiodic
- model of deconvolution. 8th Ann. [EEE Symp. Computer-Based Medic. Syst., CBMS: 308-
- Nocedal, J. and Wright, S.J., 1999, Numerical Optimization. Springer Science & Business Media,
- Inc., New York.
- Paige, C.C. and Saunders, M.A., 1982. LSQR: An algorithm for sparse linear equations and sparse
- least squares. ACM Transact. Mathem. Software, 8: 43-71.
- Reshef, M., 1991. Depth migration from irregular surfaces with depth extrapolation methods.
- Geophysics, 56: 119-122.
- DATA REGULARIZATION 347
- Ronen, J., 1987. Wave equation trace interpolation. Geophysics, 52: 973-984.
- Sacchi, M.D. and Liu, B., 2005. Minimum weighted norm wavefield reconstruction for ava
- imaging. Geophys. Prosp., 53: 787-801.
- Schneider, M.K. and Willsky, A.S., 2001. Krylov subspace estimation. SIAM J. Scientif. Comput.,
- 22: 1840-1864.
- Shewchuk, J.R., 1994. An introduction to the conjugate gradient method without the agonizing pain.
- Technical paper, School of Computer Science, Carnegie Mellon Univ.
- Shtivelman, V. and Canning, A., 1988. Datum correction by wave equation extrapolation.
- Geophysics, 53: 1311-1322.
- Spitz, S., 1991. Seismic trace interpolation in the f-x domain. Geophysics, 56: 785-794.
- Stork, C., 1994. Demonstration of mva tomography with controls and constraints for determining
- and accurate velocity model for prestack depth migration. Expanded Abstr., 64th Ann.
- Internat. SEG Mtg., Los Angeles: 1338-1342.
- Stork, C., Welsh, C. and Skuce, A., 1995. Demonstration of processing and model building
- methods on a real complex structure data set. Workshop #6, Ann. Internat. SEG Mtg.,
- Houston.
- Taner, M.T., Berkhout, A.J., Treitel, S. and Kelamis, P.G., 1982. The dynamics of statics. The
- Leading Edge, 26: 396-402.
- Taner, M.T. and Koehler, F., 2002. Surface consistent corrections. Geophysics, 46: 17-22.
- Tarantola, A., 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter
- Estimation. Elsevier Science Publishers, Inc., New York.
- van den Eshof, J. and Sleijpen, G.L.G., 2004. Accurate conjugate gradient methods for families of
- shifted systems. Appl. Numer. Mathemat., 49: 17-37.
- Yang, Q., Vogel, C.R. and Ellerbroek, B.L., 2006. Fourier domain preconditioned conjugate
- gradient algorithm for atmospheric tomography. Appl. Optics, 45: 5281-5293.
- Youmaran, R. and Adler, A., 2004. Combining regularization frameworks for image deblurring:
- Optimization of combined hyper-parameters. Expanded Abstr., Can. Conf. Electric. Comput.
- Engin., IEEE Comput. Soc.: 723-726.
- Zhang, J., Mackie, R.L. and Madden, T.R., 1995. 3-D resistivity forward modeling and inversion
- using conjugate gradients. Geophysics, 60: 1313-1325.
- Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods in
- Geochemistry and Geophysics, Vol. 36, Ist ed. Elsevier Science Publishers, Amsterdam.
- Zhu, X., Sixta, D.P. and Angstman, B.G., 1992. Tomostatics: Turning-ray tomography + static
- corrections. The Leading Edge, 11: 15-23.
- Zwartjes, P.M. and Sacchi, M.D., 2004. Fourier reconstruction of non-uniformly sampled, aliased
- data. Expanded Abstr., 74th Ann. Internat. SEG Mtg.,Denver: 1997-2000.