ARTICLE

Joint inversion of seismic reflection traveltimes and wave polarizations for anisotropic parameters using simulated annealing: a modeling study

JINGYI CHEN
Show Less
Department of Geosciences, University of Tulsa, Tulsa, OK 74104, U.S.A.,
JSE 2011, 20(1), 91–104;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Chen, J., 2011. Joint inversion of seismic reflection traveltimes and wave polarizations for anisotropic parameters using simulated annealing: a modeling study. Journal of Seismic Exploration, 20: 91-104. It is very important to utilize as much information as possible to constrain the solution due to the non-unique solutions of seismic inversion. In this paper, a joint inversion scheme of seismic reflection traveltime and wave polarization data is proposed to determine three of the five anisotropic parameters (vertical P-wave velocity vps and Thomsen’s parameters 8 and 6) in transversely isotropic media with a vertical symmetry axis (VTI). The shooting ray tracing method is applied to the forward model to obtain the seismic reflection traveltimes and polarizations. The numerical tests demonstrate that the joint inversion method can provide a better constrain to the anisotropic parameters than other inversions using single dataset (traveltime or polarization).

Keywords
P-wave traveltimes
polarization angles
joint inversion
anisotropy
simulated annealing
References
  1. Al-Lazki, A., Seber, D., Sandvol, E., Turkelli, N., Mohamad, R. and Barazangi, M., 2003.
  2. Tomographic Pn velocity and anisotropy structure beneath the Anatolian plateau (eastern
  3. Turkey) and the surrounding regions. Geophys. Res. Lett., 30: 4-7.
  4. Chen, J., Zhang, Z. and Liu, E., 2006. Anisotropic inversion of traveltime and polarization of
  5. wide-angle seismic data using simulated annealing. J. Seismic Explor., 15: 101-118.
  6. Chen, J., Teng, J. and Badal, J., 2009. Constraining the anisotropy structure of the crust by joint
  7. inversion of seismic reflection travel times and wave polarizations. J. Seismol., 13: 219-240.
  8. Farra, V. and Bégat, L.S., 1995. Sensitivity of qP-wave traveltimes and polarization vectors to
  9. heterogeneity, anisotropy and interfaces. Geophys. J. Internat., 121: 371-384.
  10. Horne, S. and Leaney, S., 2000. Polarization and slowness component inversion for TI anisotropy.
  11. Geophys. Prosp., 48: 779-788.
  12. Hu, G. and William, M., 1992. Formal inversion of laterally heterogeneous velocity structure from
  13. P-wave polarization data. Geophys. J. Internat., 110: 63-69.
  14. Hu, G., William, M. and Sigurdur, R., 1993. A demonstration of the joint use of P-wave
  15. polarization and traveltime data in tomographic inversion: crustal velocity structure near the
  16. south Iceland Lowland network. Geophys. Res. Lett., 20: 1407-1410.
  17. Ji, Y., Singh, S. and Hornby, B., 2000. Sensitivity study using a genetic algorithm: inversion of
  18. amplitude variations with slowness. Geophys. Prosp., 48: 1053-1074.
  19. Kim, W., Park, J. and Baag, C., 2006. Two-point ray tracing in dipping layered media with
  20. constant or linearly varying velocity function. Geosciences J., 10: 115-122.
  21. Kirkpatrick, S., Gelatt, C.D.Jr. and Vecchi, M.P., 1983. Optimization by simulated annealing.
  22. Science, 220: 1001-1005.
  23. Landa, E., Kosloff, D., Keydar, S., Koren, Z. and Reshef, M., 1988. A method for determination
  24. of velocity and depth from seismic reflection data. Geophys. Prosp., 36: 223-243.
  25. Lutter, W.J. and Nowack, R.L., 1990. Inversion for crustal structure using reflections from the
  26. PASSCAL Ouachita experiment. J. Geophys. Res., 95: 4633-4646.
  27. Pullammanappallil, S.K. and Louie, J.N., 1993. Inversion of seismic reflection travel-times using
  28. a nonlinear optimization scheme. Geophysics, 58: 1607-1620.
  29. Pullammanappallil, S.K. and Louie, J.N., 1994. A generalized simulated-annealing optimization for
  30. inversion of first-arrival times. Bull. Seismol. Soc. Am., 84: 1397-1409.
  31. Pullammanappallil, S.K. and Louie, J.N., 1997. A combined first-arrival travel time and reflection
  32. coherency optimization approach to velocity estimation. Geophys. Res. Lett., 24: 511-514.
  33. Rommel, B.E., 1994. Approximate polarization of plane waves in a medium having weak transverse
  34. isotropy. Geophysics, 59: 1605-1612.
  35. Rothman, D.H., 1985. Non-linear inversion, statistical mechanics, and residual statics estimation.
  36. Geophysics, 50: 2784-2796.
  37. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  38. Tsvankin, I., 1996. P-wave signatures and notation for transversely isotropic media: An overview.
  39. Geophysics, 61: 467-483.
  40. Tsvankin, I., 2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media.
  41. Elsevier Science Publishers, Amsterdam.
  42. Yamanaka, H., 2001. Application of simulated annealing to inversion of surface wave phase
  43. velocity. Comparison of performances between SA and GA inversions. Geophys. Explor.,
  44. 54: 197-206.
  45. Zelt, C.A. and Smith, R.B., 1992. Seismic traveltime inversion for 2-D crustal velocity structure.
  46. Geophys. J. Internat., 108: 16-34.
  47. Zhang, Z., Lin, G., Chen, J., Harris, J.M. and Han, L., 2003. Inversion for elliptically anisotropic
  48. velocity using VSP reflection traveltimes. Geophys. Prosp., 51: 159-166.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing