ARTICLE

Robust estimates of seismic reflector orientations with weighted vector directional filter

WEI WANG JINGHUA GAO WENCHAO CHEN
JSE 2011, 20(2), 119–134;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, W., Gao, J. and Chen, W., 2011. Robust estimates of seismic reflector orientations with weighted vector directional filter. Journal of Seismic Exploration, 20: 119-134. A major difficulty in estimating seismic reflector orientations (dip and azimuth) arises at discrete lateral and vertical discontinuities across which reflector dip and azimuth change. To overcome this problem, we explore a weighted vector directional filter (WVDF) for smoothing volumetric dip and azimuth computed by a finite-difference method. The approach falls into three steps: (1) set a reference direction, (2) invert opposite vectors to convert directions into orientations, and (3) smooth the vector field with the WVDF. The smearing and confusing variations that arise across lateral and vertical geological boundaries with traditional dip and azimuth estimations are avoided by the proposed method. This method is more robust for estimating seismic dip and azimuth and has potential for applications such as structure-oriented filtering and coherence. A still more promising application of this method is high-resolution dip and azimuth analysis through volumetric estimations of reflector curvature. Both synthetic and real data examples are used to demonstrate the ability and efficiency of our approach.

Keywords
finite difference
gradient vector
seismic dip and azimuth
vector filter
References
  1. AlBinHassan, N.M., Luo, Y. and Al-Faraj, M.N., 2006. 3D edge-preserving smoothing and
  2. applications. Geophysics, 71(4): 5-11.
  3. Al-Dossary, S. and Marfurt, K.J., 2006. 3D volumetric multispectral estimates of reflector curvature
  4. and rotation. Geophysics, 71(5): 41-51.
  5. Barnes, A.E., 1996. Theory of two-dimensional complex seismic trace analysis. Geophysics, 61:
  6. 264-272.
  7. Barnes, A.E,, 2000. Weighted average seismic attributes. Geophysics, 65: 275-285.
  8. Dalley, D., 2008. Value of visual attributes: Revisiting dip and azimuth displays for 3D seismic
  9. interpretation. First Break, 26: 87-91.
  10. Fehmers, G. and Hocker, C., 2003. Fast structural interpretation with structure-oriented filtering.
  11. Geophysics, 68: 1286-1293.
  12. Fomel, S., 2002. Applications of plane-wave destruction filters. Geophysics, 67: 1946-1960.
  13. Gersztenkorn, A. and Marfurt, K.J., 1999, Eigenstructure based coherence computations as an aid
  14. to 3D structural and stratigraphic mapping. Geophysics, 64: 1468-1479.
  15. Hoeber, H., Brandwood, S, and Whitcombe, D.N., 2006. Structurally consistent filtering. Extended
  16. Abstr., 68th EAGE Conf., Vienna: Z-99.
  17. Lavialle, O., Pop, S., Germain, C., Donias, M., Guillon, S., Keskes, N. and Berthoumieu, Y.,
  18. Seismic fault preserving diffusion. J. Appl. Geophys., 61: 132-141.
  19. Lukac, R., Smolka, B., Martin, K., Plataniotis, K.N. and Venetsanopoulos, A.N., 2005. Vector
  20. filtering for color imaging. IEEE Signal Proc. Mag., Spec. Issue on Color Image Proc., 22:
  21. 74-86.
  22. Luo, Y., Higgs, W.G. and Kowalik, W.S., 1996. Edge detection and stratigraphic analysis using
  23. 3D seismic data. Expanded Abstr., 66th Ann. Internat. SEG Mtg., Denver: 324-327.
  24. Luo, Y., Marhoon, M., Al-Dossary, S., and Alfaraj, M., 2002. Edge-preserving smoothing and
  25. applications. The Leading Edge, 21: 136-158.
  26. Luo, Y., Wang, Y.E., AlBinHassan, N.M. and Alfaraj, M.N., 2006. Computation of dips and
  27. azimuths with weighted structural tensor approach. Geophysics, 71(5): 119-121.
  28. Marfurt, K.J., Kirlin, R.L., Farmer, S.H. and Bahorich, M.S., 1998. 3D seismic attributes using
  29. a running window semblance-base algorithm. Geophysics, 63: 1150-1165.
  30. Marfurt, K.J., Sudhaker, V., Gersztenkorn, A., Crawford, K.D. and Nissen, S.E., 1999. Coherence
  31. calculations in the presence of structural dip. Geophysics, 64: 104-111.
  32. Marfurt, K.J., 2006. Robust estimates of 3D reflector dip and azimuth. Geophysics, 71(4): 29-40.
  33. Ottolini, R., 1983. Signal/noise separation in dip space. SEP report 37: 143-149.
  34. Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., Saeter, T., Schlaf, J. and
  35. Sonneland, L., 2000. Three-dimensional texture attributes for seismic data analysis.
  36. Expanded Abstr., 70th Ann. Internat. SEG Mtg., Calgary, Alberta: 668-671.
  37. 134 WANG, GAO & CHEN
  38. Trahanias, P.E. and Venetsanopoulos, A.N., 1993. Vector directional filters: A new class of
  39. multichanne! image processing filter. IEEE Trans. Image Proc., 2(4): 528-534.
  40. Wang, Y.E., Luo, Y. and Alfaraj, M., 2008. Inverse-vector approach for smoothing dips and
  41. azimuths. Geophysics, 73(6): 9-14.
  42. Wang, Y.E., Luo, Y. and Alfaraj, M., 2008. Enhanced isotropic 2D and 3D gradient method. U.S.
  43. Patent 11/787986.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing