Multi-component time-lapse seismic: on saturation-pressure discrimination and statistical detectability of fluid flow

Shahin, A., Stoffa, P.L., Tatham, R.H. and Sava, D., 2011. Multi-component time-lapse seismic: on saturation-pressure discrimination and statistical detectability of fluid flow. Journal of Seismic Exploration, 20: 357-378. We evaluate the production-induced time-lapse response of three sandstone reservoirs corresponding to three rock physics models spanning a full range of common degrees of consolidation. For a range of water saturation and pore pressure, we compute multi-component (MC) seismic, i.e., conventional P-P, converted P-SV, and pure shear SH-SH, traveltimes through and reflection coefficients (RCs) at top of the sandstone reservoir embedded in a background shale. Then, we compute changes in traveltimes and reflection coefficients with respect to a reference traveltime and RC calculated at reference saturation and pressure conditions. We plot changes in RCs versus changes in traveltimes. The corresponding time-lapse cross-plot shows interesting patterns for saturation and pressure changes and has the potential for quantitatively discriminating pressure and saturation changes. Next, we deploy a statistical method to determine the efficacy of MC seismic in detecting production-induced time-lapse changes. The significant and representative data in time-lapse cross-plot allow one to statistically analyze the detectability of a known scenario of saturation and pressure changes using MC seismic attributes. Applying different thresholds for traveltimes and RCs, we construct single and joint probability detectors that help to compare the likelihood of detection of a known change in dynamic reservoir properties using different component of the seismic data. Our analysis demonstrates that seismically detection of the changes in fluid saturation and pressure is significantly limited for a consolidated sandstone reservoirs. However, the detection is plausible for poorly to medium consolidated reservoirs in the presence of realistic seismic noise levels. In these cases, conventional P-P seismic data is dominant in amplitude change compared to converted P-SV and pure SH-SH seismic data, P-P data reflects changes in both fluid saturation and pore pressure. However, the main effect of P-P data is the saturation component than pressure. SH-SH seismic data capture most the pressure information using traveltimes of pre-stack data. P-SV seismic data is the weakest detector of changes in time-lapse amplitude, but its traveltime shows an intermediate detectability between P-P and SH-SH seismic data for changes in both fluid saturation and pressure.
- Anderson, T., Zachariassen, E., Hoye, T., Meisingset, H.C., Otterlei, C., van Wijngaarden, A.J.,
- Hatland, K. and Mangeroy, F., 2006. Method of conditioning the reservoir model on 3D
- and 4D elastic inversion data applied to a fluvial reservoir in the North Sea. Expanded
- Abstr., SPE/EAGE Conf., Vienna. SPE 100190.
- Andersen, C.F., Grosfeld, V., Wijngaarden, A.J. and Haaland, A.N., 2009. Interactive
- interpretation of 4D prestack inversion data using rock physics templates, dual classification,
- and real-time visualization. The Leading Edge, 28: 898-906.
- Angelov, P., Spetzler, J. and Wapenaar, C.P.A., 2004. Pore pressure and water saturation
- variations: Modification of Landra AVO approach. Expanded Abstr., 74th Ann. Internat.
- SEG Mtg., Denver.
- Avseth, P., Mukerji, T. and Mavko, G., 2005. Quantitative Seismic Interpretation., Cambridge
- University Press, Cambridge.
- Batzle, M. and Wang, Z., 1992. Seismic properties of pore fluids. Geophysics, 57: 1396.
- 378 SHAHIN, STOFFA, TATHAM & SAVA
- Behrens, R., Condon, P., Haworth, W., Bergeron, M., Wang, Z. and Ecker, C., 2002. 4D seismic
- monitoring of water flux at Bay Marchand: The practical use of 4D in an imperfect world.
- SPE Reserv. Eval. Engin., 5: 410.
- Biot, M.A., 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid, I:
- Low-frequency range; II: higher frequency range. J. Acoust. Soc. Am., 28: 168-191.
- Blangy, J.P., 1994. AVO in transversely isotropic media. Geophysics, 59: 775-781.
- Cole, S., Lumley, D., Meadows, M. and Tura, A., 2002. Pressure and saturation inversion of 4D
- seismic data by rock physics forward modeling. Expanded Abstr., 72nd Ann. Internat. SEG
- Mtg., Salt Lake City.
- Cooper, M., Thorogood, E., O’Donovan, A., Kristiansen, P. and Christie, P., 1999. Foinaven
- active reservoir management: The time-lapse signal. Expanded Abstr., 69th Ann, Internat.
- SEG Mtg., Houston: 1640,
- Fournier, F., Dequirez, P.Y., Macrides, C.G. and Rademakers, M., 2002. 2-D and 3-D
- lithostratigraphic interpretation of seismic data for characterization of the Unayzah formation
- in central Saudi Arabia. Geophysics, 67: 1372-1381.
- Gal, D., Dvorkin, J. and Nur, A., 1998. A physical model for porosity reduction in sandstones.
- Geophysics, 63: 454-459.
- Gassmann, F., 1951. On elasticity of porous media. Vierteljahrsschrift der Naturforschenden Ges.
- in Zurich. Joint Translation by Stanford University, 1998.
- Han, D.H., 1986. Effects of Porosity and Clay Content on Acoustic Properties of Sandstones and
- Unconsolidated Sediments. Ph.D. Thesis, Stanford University, Stanford.
- Killough, J.E., 1995, Ninth SPE comparative solution project: A Reexamination of Black-oil
- simulation. SPE Reserv. Simulat. Symp., 12-15 February 1995, San Antonio, TX: 135-147.
- Landre, M., 2001. Discrimination between pressure and fluid saturation changes from time-lapse
- seismic data. Geophysics, 66: 836-844.
- Landro, M., Veire, H.H., Duffaut, K. and Najjar, N., 2003. Discrimination between pressure and
- fluid saturation changes from marine multi-component time-lapse seismic data. Geophysics,
- 68: 1592-1599.
- Lumley, D.E., Behrens, R.A. and Wang, Z., 1997. Assessing the technical risk of a 4D seismic
- project. The Leading Edge, 16, 894.
- Lumley, D.E., Nunns, A.G., Delorme, G., Adeogba, A.A. and Bee, M.F., 2003. Meren field,
- Nigeria: A 4D seismic case study. Expanded Abstr., 73rd Ann. Internat. SEG Mtg., Dallas.
- Lumley, L., Meadows, M., Cole, S. and Adams, D., 2003. Estimation of reservoir pressure and
- saturation by crossplot inversion of 4D seismic attributes. 73rd Ann. Internat. SEG Mtg.,
- Dallas.
- MacBeth, C., Floricich, M. and Soldo, J., 2006. Going quantitative with 4D seismic analysis.
- Geophys. Prosp., 54: 303-317.
- Marsh, J.M., Bagley, G., Lewis, A., McGarrity, J., Nash, T., Parr, R., Saxby, J. and Whitcombe,
- D., 2001. The use of 4D seismic in reservoir management. Extended Abstr., 63rd EAGE
- Conf., Amsterdam.
- Mavko, G., Mukerji, T., and Dvorkin, J., 2009, second edition, The Rock physics handbook-Tools
- for seismic analysis of porous media, Cambridge Univ. Press.
- Mindlin, R.D., 1949. Compliance of elastic bodies in contact. Transact. ASME, A-259.
- Rutleda, H., Elde, R., Wijngaarden, A.J., Helgesen, J., Buran, H. and Weisser, T., 2002.
- Time-lapse elastic inversion at the Oseberg field. 64th EAGE Conf., Florence.
- Shahin, A., Stoffa, P.L., Tatham, R.H. and Sava, D., 2009. Multicomponent seismic time-lapse
- cross-plot and its applications. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston.
- Tura, A. and Lumley, D.E., 1999, Estimating pressure and saturation changes from time-lapse AVO
- data. Expanded Abstr., 69th Ann. Internat. SEG Mtg., Houston: 1655-1658.
- Veire, H.H., Borgos, H.G. and Landre, M, 2006. Stochastic inversion of pressure and saturation
- changes from time-lapse AVO data. Geophysics, 71: C81.
- Walker, G., Allan, P., Trythall, R., Parr, R., Marsh, M., Kjelstadli, R., Barkved, O., Johnson,
- D. and Lane, S., 2006. Three case studies of progress in quantitative seismic-engineering
- integration. The Leading Edge, 25: 1161-1166.