Nearly perfectly matched layer boundary condition for second-order anisotropic acoustic wave equations

Ozsoy, C., Chen, J., Zhang, Q., Zhao, J. and Metin, G., 2013. Nearly perfectly matched layer boundary condition for second-order anisotropic acoustic wave equations. Journal of Seismic Exploration, 22: 489-500. During the numerical simulation of seismic wave propagation, the artificial layers are used at the computational boundaries to truncate the unbounded media which cause the unwanted reflections. In this study, the validity of the nearly perfectly matched layer as an absorbing layer, which has proven to be very efficient for first-order acoustic and elastic wave equations in stress and velocity, is detailed investigated to suppress those spurious reflections for second-order anisotropic acoustic wave equations. The numerical test results show that the nearly perfectly matched layer has a significant performance to absorb the outgoing waves at the model edges.
- Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media. Geophysics, 65: 1239-1250.
- Bérenger, J., 1994. A perfectly matched layer for the absorption of electromagnetic waves. J.
- Computat. Phys., 114: 185-200.
- Chen, J. and Zhao, J., 2011. Application of the nearly perfectly matched layer to seismic-wave
- propagation modeling in elastic anisotropic media. Bull. Seismol. Soc. Am., 101: 2866-2871.
- Chen, J., 2012. Nearly perfectly matched layer method for seismic wave propagation in poroelastic
- media. Can. J. Explor. Geophys., 37: 24-29.
- Collino, F. and Tsogka, C., 2001. Application of the PML absorbing layer model to the linear
- elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66: 294-307.
- Courant, R., Friedrichs, K.O. and Lewy, H., 1928. Ueber die partiellen differenzengleichungen der
- mathematischen physik. Mathemat. Annalen, 100: 32-74.
- Cummer, S.A., 2003. A simple, nearly perfectly matched layer for general electromagnetic media.
- IEEE Microwave Wirel. Compon. Lett., 13: 137-140.
- Du, X., Fletcher, R.P. and Fowler, P.J., 2008. A new pseudo-acoustic wave equation for VTI
- media. Extended Abstr., 70th EAGE Conf., Rome: H033.
- Helbig, K., 1983. Elliptical anisotropy - Its significance and meaning. Geophysics, 48: 825-832.
- Hastings, F.D., Schneider, J.B. and Broschat, S.L., 1996. Application of the perfectly matched
- layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am.,
- 100: 3061-3069.
- Hu, W., Abubakar, A. and Habashy, T., 2007. Application of the nearly perfectly matched layer
- in acoustic wave modeling. Geophysics, 72: 169-175.
- Kelly, K.R., Ward, R.W., Treitel, S. and Alford, R.M., 1976. Synthetic seismograms: A
- finite-difference approach. Geophysics, 41: 2-27.
- Komatitsch, D. and Tromp, J., 2003. A Perfectly Matched Layer (PML) absorbing condition for
- the second-order elastic wave equation. Geophys. J. Internat., 154: 146-153.
- McGarry, R. and Moghaddom, P., 2009. NPML boundary conditions for second-order wave
- equations. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3590-3594.
- Metin, G., Chen, J. and Ozsoy, C., 2013. Application of nearly perfectly matched layer with
- second-order acoustic equations in seismic numerical modeling. J. Geol. Geosci., 2: 120.
- doi: 10.4172/2329-6755. 1000120. :
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Tsvankin, I., Gaiser, J., Grechka, V., van der Baan, M. and Thomsen, L., 2010. Seismic
- anisotropy in exploration and reservoir characterization: An overview. Geophysics, 75: A15-
- A29.
- Zeng, Y., He, J. and Liu, Q., 2001. The application of the perfectly matched layer in numerical
- modeling of wave propagation in poroelastic media. Geophysics, 66: 1258-1266.
- Zhou, H., Zhang, G. and Bloor, R., 2006. An anisotropic acoustic wave equation for VTI media.
- Extended Abstr., 68th EAGE Conf., Vienna: H033.