ARTICLE

Gradient calculation for waveform inversion of microseismic data in VTI media

OSCAR JARILLO MICHEL ILYA TSVANKIN
Show Less
Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A.,
JSE 2014, 23(3), 201–217;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Jarillo Michel, O. and Tsvankin, I., 2014. Gradient calculation for waveform inversion of microseismic data in VTI media. Journal of Seismic Exploration, 23: 201-217. In microseismic data processing, source locations and origin times are usually obtained using kinematic techniques, whereas moment-tensor estimates are typically based on linear inversion of P- and S-wave amplitudes. Waveform inversion (WI) can potentially provide more accurate source parameters along with an improved velocity model by incorporating information contained in the entire trace including the coda. Here, we address one of the key issues in implementing WI for microseismic surveys - efficient calculation of the gradient of the objective function with respect to the model parameters. Application of the adjoint-state method helps obtain closed-form expressions for the gradient with respect to the source location, origin time, and moment tensor. Computation of the forward and adjoint wavefields is performed with a finite-difference algorithm that handles elastic VTI (transversely isotropic with a vertical symmetry axis) models. Numerical examples illustrate the properties of the gradient for multicomponent data recorded by a vertical receiver array placed in homogeneous and horizontally layered VTI media.

Keywords
microseismic
waveform inversion
anisotropy
transverse isotropy
adjoint-state method
multicomponent data
source location
moment tensor
References
  1. Aki, K. and Richards, P.G., 1980. Quantitative Seismology. Theory and Methods, Vol. I. W.H.
  2. Freeman and Co., San Francisco.
  3. Dahlen, F.A. and Tromp, J., 1998. Theoretical Global Seismology. Princeton University Press,
  4. Princeton.
  5. Fichtner, A., 2006. The adjoint method in seismology: I. Theory. Phys. Earth Planet. Inter., 157:
  6. 86-104.
  7. Fichtner, A., 2009. Full Seismic Waveform Inversion for Structural and Source Parameters. Ph.D.
  8. thesis, Ludwig-Maximilians-Universitat, Munich.
  9. WAVEFORM INVERSION OF MICROSEISMIC DATA 217
  10. Gauthier, O., Virieux, J. and Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic
  11. waveforms: Numerical results. Geophysics, 51: 1387-1403.
  12. Grechka, V. and Duchkov, A., 2011. Narrow-angle representations of the phase and group velocities
  13. and their applications in anisotropic velocity-model building for microseismic monitoring.
  14. Geophysics, 76: WC127-WC142.
  15. Grechka, V., Singh, P. and Das, I., 2011. Estimation of effective anisotropy simultaneously with
  16. locations of microseismic events. Geophysics, 76: WC143-WC155.
  17. Grechka, V. and Yaskevich, S., 2013. Azimuthal anisotropy in microseismic monitoring. Part 1:
  18. Theory. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 1987-1991.
  19. Grechka, V. and Yaskevich, S., 2014. Azimuthal anisotropy in microseismic monitoring: A Bakken
  20. case study. Geophysics, 79: KS1-KS12.
  21. Kamath, N. and Tsvankin, I., 2013. Full-waveform inversion of multicomponent data for
  22. horizontally layered VTI media. Geophysics, 78: WC113-WC121.
  23. Kendall, M., Maxwell, S., Foulger, G., Eisner, L. and Lawrence, Z., 2011. Microseismicity:
  24. Beyond dots in a box. Introduction. Geophysics, 76: WC1-WC3.
  25. Kim, Y., Liu, Q. and Tromp, J., 2011. Adjoint centroid-moment tensor inversions. Geophys. J.
  26. Internat., 186: 264-278.
  27. Kohn, D., 2011, Time Domain 2D Elastic Full Waveform Tomography. Ph.D. thesis, Christian
  28. Albrechts-Universiat, Kiel.
  29. Lee, H.-Y., Koo, J.M., Min, D.-J., Kwon, B.-D. and Yoo, H.S., 2010. Frequency-domain elastic
  30. full waveform inversion for VTI media. Geophys. J. Internat., 183: 884-904.
  31. Li, J., Tokséz, M.N., Li, C., Morton, S., Dohmen, T. and Katahara, K., 2013. Locating Bakken
  32. microseismic events with simultaneous anisotropic tomography and extended double-
  33. difference method. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 2073-2078.
  34. Liu, Q. and Tromp, J., 2006. Finite-frequency kernels based on adjoint methods. Bull. Seismol.
  35. Soc. Am., 96: 2383-2397.
  36. Maxwell, S., 2010. Microseismic: Growth born from success. The Leading Edge, 29: 338-343.
  37. Mora, P., 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics,
  38. 52: 1211-1228.
  39. Morency, C. and Mellors, R.J., 2012. Full moment tensor and source location inversion based on
  40. full waveform adjoint inversion: application at the Geysers geothermal field. Expanded
  41. Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  42. Perrone, F. and Sava, P., 2012. Wavefield tomography based on local image correlations: CWP
  43. Project Review Report: 51-76.
  44. Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a functional
  45. with geophysical applications. Geophys. J. Internat., 167: 495-503.
  46. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
  47. verification in a physical scale model. Geophysics, 64: 888-901.
  48. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  49. 49: 1259-1266.
  50. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  51. Tromp, J., Tape, C. and Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal and
  52. banana-doughnut kernels. Geophys. J. Internat., 160: 195-216.
  53. Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, 3rd
  54. ed. SEG, Tulsa, OK.
  55. Tsvankin, I. and Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and Seismic
  56. Fracture Characterization. SEG, Tulsa, OK.
  57. Van Dok, R., Fuller, B., Engelbrecht, L. and Sterling, M., 2011. Seismic anisotropy in
  58. microseismic event location analysis. The Leading Edge, 30: 766-770.
  59. Vavrycuk, V., 2005. Focal mechanisms in anisotropic media. Geophys. J. Internat., 161: 334-346.
  60. Vavrycuk, V., 2007. On the retrieval of moment tensors from borehole data. Geophys. Prosp., 55:
  61. 381-391.
  62. Virieux, J., and Operto, S., 2009. An overview of full-waveform inversion in exploration
  63. geophysics. Geophysics, 74: WCC1-WCC26.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing