Linearized AVA inversion of PP and PS reflections from low-velocity targets using Zoeppritz equations

The top of a reservoir is often a seismic interface of decreasing velocity. No critical angle exists in reflections from such an interface, and so Zoeppritz reflection coefficients are closed-form and accurate at all incident angles and frequencies. However, most existing AVO methods use approximations to the Zoeppritz equations. These approximations assume small contrasts and small angles, and the number of invertible parameters is usually limited to two or three (the so-called two- or three-term AVO). We propose using the Zoeppritz equations for amplitude inversion of target reflections without critical angles. The Fréchet derivatives are calculated analytically. We use a linearized iterative least-squares inversion scheme. This algorithm is applicable to PP, PS, SS, and SP reflections. We demonstrate that PP amplitude data can be invertéd for four parameters (three velocity ratios and the density ratio), although joint inversion of PP and PS reflections can greatly improve the robustness. The algorithm is superior to conventional approximations in that it works for any large (decreasing) contrasts at any large angles; it is accurate and can invert for more parameters.
- Aki, K.T. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods, W.H.
- Freeman, San Francisco.
- 336 ZHU, MCMECHAN & GONG
- Alhussain, M., Gurevich B. and Urosevic, M., 2008. Experimental verification of spherical wave
- effect on the AVO response and implications for three-term inversion. Geophysics, 73(2):
- C7-Cl2.
- Arntsen, B., Kritski, A., Ursin, B. and Amundsen, L., 2013. Shot-profile true amplitude
- crosscorrelation imaging condition. Geophysics, 78(4): $221-S231.
- Beaudoin, G., 2010. Imaging the invisible - BP’s path to OBS nodes. Expanded Abstr., 80th Ann.
- Internat. SEG Mtg., Denver: 3734-3739.
- Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane
- longitudinal and transverse waves. Geophys. Prosp., 9: 482-502.
- Cerveny, V., Molotkov, I.A. and Pseneik, 1977. Ray Method in Seismology. Charles University
- Press, Prague.
- Coleman, T.F. and Li, Y., 1994. On the convergence of interior-reflective Newton methods for
- nonlinear minimization subject to bounds. Mathemat. Program., 67: 189-224.
- Deng, F. and McMechan, G.A., 2007. True-amplitude prestack depth migration, Geophysics, 72(3):
- $155-S166.
- Kelly, K.R., Ward, R.W., Treitel, S. and Alford, R.M., 1976. Synthetic seismograms: A
- finite-difference approach. Geophysics, 41: 2-27.
- Kennett, B.L.N., 1981. Seismic waves in a stratified half space - II. Theoretical seismograms.
- Geophys. J. Roy. Astron. Soc., 61: 1-10.
- Lehocki, I., Avseth, P. and Veggeland, T., 2013. Exact Zoeppritz-inversion of Vp/Vs ratio -
- application to a Barents Sea gas reservoir. Extended Abstr., 75th EAGE Conf., London: Th
- P15 05.
- Ma, J., Fu, G.P., Geng, J. and Guo, T.L., 2013. Full Zoeppritz equation-based elastic parameters
- Bayesian generalized linear inversion. Extended Abstr., 75th EAGE Conf., London: Tu 10
- Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade for Marmousi.
- The Leading Edge, 25: 156-166.
- Moldoveanu, N., Ji, Y. and Beasley, C., 2012. Multivessel coil shooting acquisition with
- simultaneous sources. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas,
- doi: 10.1190/segam2012-1526.1
- Russell, B.R., Gray, D. and Hampson, D.P., 2012. Linearized AVO and poroelasticity. Geophysics,
- 76(3): C19-C29.
- Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.
- Skopintseva, L., Ayzenberg, M., Landrg, M., Nefedkina, T. and Aizenberg, A.M., 2011.
- Long-offset AVO inversion of PP reflections from plane interfaces using effective reflection
- coefficients. Geophysics, 76: C65-C79.
- Ursenbach, C.P., 2002. Optimal Zoeppritz approximations. Expanded Abstr., 72nd Ann. Internat.
- SEG Mtg., Salt Lake City: 1897-1900.
- Ursin, B. and Dahl, T., 1992. Seismic reflection amplitudes. Geophys. Prosp., 40: 483-512.
- Ursin, B. and Tjaland, E., 1996. The information content of the elastic reflection matrix. Geophys.
- J. Internat., 125: 214-228.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite difference
- method. Geophysics, 51: 889-901.
- Wang, Y., 1999. Approximation to the Zeoppritz equations and their use in AVO analysis.
- Geophysics, 64: 1920-1927.
- Zhi, L., Chen, S. and Li, X., 2013. Joint AVO inversion of PP and PS waves using exact Zoeppritz
- equation. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 457-461.
- Zhu, X. and McMechan, G.A., 2012a. AVO inversion using the Zoeppritz equation for PP
- reflections. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
- doi: 10.1190/segam2012-0160.1
- Zhu, X. and McMechan, G.A., 2012b. Elastic inversion of near- and post-critical reflections using
- phase variation with angle. Geophysics, 77(4): R149-R159.
- Zhu, X. and McMechan, G.A., 2014. Amplitude and phase versus angle for elastic wide-angle
- reflections in the 7-p domain. Geophysics, 79(4): submitted.
- LINEARIZED AVA INVERSION 337