ARTICLE

P-wave diffraction and reflection traveltimes for a homogeneous 3D TTI medium

QI HAO ALEXEY STOVAS
Show Less
Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, S.P. Andersensvei 15A, 7491 Trondheim, Norway.,
JSE 2014, 23(5), 405–429;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Hao, Q. and Stovas, A., 2014. P-wave diffraction and reflection traveltimes for a homogeneous 3D TTI medium. Journal of Seismic Exploration, 23: 405-429. Diffractions are produced by material discontinuities. Diffraction traveltime contains information about the velocity along the entire ray path, which is useful for improving the image quality. We derive an analytical midpoint-offset diffraction traveltime approximation for P-waves in a 3D homogeneous transversely isotropic medium with a tilted symmetry axis (TTI) under the assumption of weak anellipticity of the medium. From the proposed diffraction traveltime approximation, we also derive the P-wave reflection traveltime for a dip-constrained transversely isotropic (DTI) model. Two numerical examples illustrate the accuracy of both approximations for diffraction and reflection traveltime. One example is provided to analyze the shape of midpoint-offset diffraction traveltime. A short discussion on possible applications in heterogeneous TTI and multi-layered DTI models concludes the paper.

Keywords
diffraction
traveltime
anisotropy
References
  1. Alkhalifah, T., 1998. Acoustic approximations for seismic processing in transversely isotropic
  2. media. Geophysics, 63: 623-631.
  3. Alkhalifah, T., 2000a. An acoustic wave equation for anisotropic media. Geophysics, 65: 1239-
  4. Alkhalifah, T., 2000b. The offset-midpoint traveltime pyramid in transversely isotropic media.
  5. Geophysics, 65: 1316-1325.
  6. Bender, C.M. and Orszag, S.A., 1978. Advanced Mathematical Methods for Scientists and
  7. Engineers. McGraw-Hill, New York.
  8. Bakulin, A., Woodward, M., Nichols, D., Osypov, K. and Zdraveva, O., 2010. Building tilted
  9. transversely isotropic depth models using localized anisotropic tomography with well
  10. information. Geophysics, 75, D27-D36.
  11. Claerbout, J., 1985. Imaging the Earth’s Interior. Blackwell Science Inc., New York.
  12. 422 HAO & STOVAS
  13. Dell, S., Pronevich, A., Kashtan, B. and Grajewski, D., 2013. Diffraction traveltime approximation
  14. for general anisotropic media. Geophysics, 78: WC15-WC23.
  15. Fomel, S. and Stovas, A., 2010. Generalized nonhyperbolic moveout approximation. Geophysics,
  16. 75: U9-U18.
  17. Grechka, V., Pech, A. and Tsvankin, I., 2002. Multicomponent stacking-velocity tomography for
  18. transversely isotropic media. Geophysics, 67: 1564-1574.
  19. Hao, Q. and Stovas, A., 2013. The offset-midpoint traveltime pyramid in TTI media. Extended
  20. Abstr., 75th EAGE Conf., London: P01 05.
  21. Hao, Q., Stovas, A. and Alkhalifah T., 2013. The azimuth-dependent offset-midpoint traveltime
  22. pyramid in 3D HTI media. Expanded Abstr, 83rd Ann. Internat. SEG Mtg., Houston.
  23. doi: 10.1190/segam2013-0058. 1.
  24. Landa, E. and Keydar, S., 1998. Seismic monitoring of diffraction images for detection of local
  25. heterogeneities. Geophysics, 63: 1093-1100.
  26. Reeshidev, B. and Sen, M.K., 2005. 3-D two-point ray tracing in general anisotropic media.
  27. Expanded Abstr., 75th Ann. Internat. SEG Mtg., Houston: 190-193.
  28. Stovas, A. and Alkhalifah, T., 2013. Mapping moveout approximations in TI media. Geophysics,
  29. 79: C19-C26.
  30. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  31. Tsvankin, I. and Thomsen, L., 1994. Nonhyperbolic reflection moveout in anisotropic media.
  32. Geophysics, 59: 1290-1304.
  33. Tsvankin, I., 2001. Seismic Signatures and Analysis of Reflection Data in Anisotropic Medium.
  34. Elsevier Science Publishers, Amsterdam.
  35. Tsvankin, I. and Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and Seismic
  36. Fracture Characterization. SEG, Tulsa, OK.
  37. Ursin, B. and Stovas, A., 2006. Traveltime approximations for a layered transversely isotropic
  38. medium. Geophysics, 71: D23-D33.
  39. Wang, X., and Tsvankin, I., 2011. Moveout inversion of wide-azimuth P-wave data for tilted TI
  40. media. Geophysics, 76, WA23-WA29.
  41. Wang, X. and Tsvankin, I., 2013a. Ray-based gridded tomography for tilted transversely isotropic
  42. media. Geophysics, 78, C11-C23.
  43. Wang, X. and Tsvankin, I., 2013b. Multiparameter TTI tomography of P-wave reflection and VSP
  44. data. Geophysics, 78, WC51-WC63.
  45. Woodward, M.J., Nichols, D., Zdraveva, O., Whitfield, P. and Johns, T., 2008. A decade of
  46. tomography. Geophysics, 73: VES-VE11.
  47. Zhou, C., Jiao, J., Lin, S., Sherwood, J. and Brandsberg-Dahl, S., 2011. Multiparameter joint
  48. tomography for TTI model building. Geophysics, 76: WB183-WB190.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing