ARTICLE

Full waveform inversion without low frequency using wavefield phase correlation shifting method

HELONG YANG1 LIGUO HAN1 FENGJIAO ZHANG1,2 HONGYU SUN1 LU BAI1
Show Less
1 College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026 Jilin, P.R. China.,
2 Uppsala University, Villavagen 16, Uppsala 75236, Sweden.,
JSE 2016, 25(1), 45–55;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Yang, H., Han, L., Zhang, F., Sun, H. and Bai, L., 2016. Full waveform inversion without low frequency using wavefield phase correlation shifting method. Journal of Seismic Exploration, 25: 45-55. Full Waveform Inversion (FWI) of seismic data is a high resolution subsurface imaging tool and there is a lot of effort to fully industrialize it. The method, which uses a gradient based data fitting approach to minimize the misfit between observed and simulated waveforms, strongly requires either a good initial model or low frequency data for the convergence to the global solution. In this paper, we address the cycle skipping phenomena when none of the two above mentioned requirements are met. Then we propose the wavefield phase correlation shifting (WPCS) method to help reduce the influence of local minimum. Comparéd to the conventional FWI methods, a better inversion result could be achieved by applying the WPCS method without the low frequency components. We test the WPCS method on the Marmousi model and the result is improved compared with conventional method.

Keywords
full waveform inversion
frequency domain
wavefield phase correlation shifting
References
  1. Ben-Hadj-Ali, H. and Operto, S., 2011. An efficient frequency-domain full waveform inversion
  2. method using simultaneous encoded sources. Geophysics, 76(4): R109-R124.
  3. Berkhout, A.J., Blacquiére, G. and Verschuur, D.J., 2009. The concept of double blending:
  4. Combining incoherent shooting with incoherent sensing. Geophysics, 74(4): A59-A62.
  5. Bi, H. and Lin, T., 2014. Effective cycle skipping reduction through adaptive data selection for full
  6. waveform inversion. Extended Abstr., 76th EAGE Conf., Amsterdam.
  7. Biondi, B. and Almomin, A., 2012. Tomographic full-waveform inversion (TFWI) by combining full
  8. waveform inversion with wave-equation migration velocity analysis. Expanded Abstr., 82nd
  9. Ann. Internat. SEG Mtg., Las Vegas.
  10. Brenders, A.J. and Pratt, R.G., 2007. Efficient waveform tomography for lithospheric imaging:
  11. Implications for realistic, 2D acquisition geometries and low-frequency data. Geophys. J.
  12. Internat., 168(1): 152-170.
  13. Brossier, R., Operto, S. and Virieux, J., 2010. Which data residual norm for robust elastic
  14. frequency-domain full waveform inversion. Geophysics, 75(3), R37-R46.
  15. Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform inversion.
  16. Geophysics, 60(5): 1457-1473.
  17. Choi, Y. and Alkhalifah, T., 2011. Frequency-domain waveform inversion using the unwrapped
  18. phase. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San Antonio: 2576-2580.
  19. Ha, W. and Shin, C., 2012. Laplace-domain full-waveform inversion of seismic data lacking low
  20. frequency information. Geophysics, 77(5): R199-R206.
  21. Han, M., Han, L.G., Liu, C.C. and Chen, B.S., 2013. Frequency-domain auto-adapting full
  22. waveform inversion with blended source and frequency-group encoding. Appl. Geophys.,
  23. 10(1): 41-52.
  24. Hild, F. and Roux, S., 2012. Comparison of local and global approaches to digital image correlation.
  25. Experim. Mechan., 52: 1503-1519.
  26. Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
  27. Quantitative imaging of complex structures from dense wide-aperture seismic data by
  28. multi-scale traveltime and waveform inversions: a case study. Geophys. Prosp., 52: 625-651.
  29. Pratt, R.G., 1999a. Seismic waveform inversion in the frequency domain, Part 1: Theory and
  30. verification in a physical scale model. Geophysics, 64: 888-901.
  31. Shin, C. and Cha, Y.H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat.,
  32. 173(3): 922-931.
  33. Son, M., Kim, Y. and Shin, C., 2010. A time-domain waveform inversion using filtering techniques.
  34. Expanded Abstr., 80th Ann. Internat. SEG Mtg., Denver.
  35. Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F. and McNeill, S.R., 1983. Determination
  36. of displacements using an improved digital correlation method: Image and vision computing,
  37. 1(3): 133-139.
  38. Symes, W.W., 2008. Migration velocity analysis and waveform inversion. Geophys. Prosp., 56: 765-
  39. Warner, M., Nangoo, T., Shah, N., Umpleby, A. and Morgan, J., 2013. Full-waveform inversion
  40. of cycle-skipped seismic data by frequency down-shifting. Expanded Abstr., 83rd Ann.
  41. Internat. SEG Mtg., Houston.
  42. Hu, W., 2014. FWI without low frequency data-beat tone inversion. Expanded Abstr., 84th Ann.
  43. Internat. SEG Mtg., Denver.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing