Adaptive energy compensation for full waveform inversion based on seismic illumination analysis

Sun, H., Han, L., Chen, J. and Han, M., 2016. Adaptive energy compensation for full waveform inversion based on seismic illumination analysis. Journal of Seismic Exploration, 25: 269-284. Full waveform inversion (FWI) which is an advanced seismic imaging technique based on the data fitting of full wavefield simulation has become extremely important in both academic research and commercial application in recent years. During the implementation of FWI, seismic velocities of deeper and complex parts of the model cannot be well updated due to the weak energy of seismic wavefields where they have less contributions to the mismatch between observed and calculated data in the objective function, even though the large velocity contrasts do. The uneven distribution of energy may have a significantly negative effect on reconstructing velocity structures of deep and complex zones. Therefore, an adaptive energy compensation method based on seismic illumination analysis is proposed to improve the imaging quality for FWI. We discuss the effects of limited maximum offset and complex velocity structures on the inhomogeneous energy distribution of seismic wavefields in terms of 2D acoustic wave equation. Two-way seismic illumination analysis is applied to calculate wavefield energy, adaptively compensate and balance the gradients according to the reflection and transmission coefficients which represent the partitioning of seismic waves energy at an interface. Numerical examples demonstrate the improved imaging accuracy without sacrificing too much computational efficiency of FWI when the maximum is limited.
- Alford, M., Kelly, R. and Boore, M., 1974. Accuracy of finite difference modeling of the acoustic
- wave equation. Geophysics, 39: 834-842.
- Alkhalifah, T. and Plessix, R., 2014. A recipe for practical full-waveform inversion in anisotropic
- media: An analytical parameter resolution study. Geophysics, 79: R91-R101.
- Alkhalifah, T., 2015. Conditioning the full-waveform inversion gradient to welcome anisotropy.
- Geophysics, 80: R111-R122.
- Alves, C., Bulcdo, A., Filho, S., Theodoro, E. and Santos, A., 2009. Target oriented approach for
- illumination analysis using wave equation via FDM. Expanded Abstr., 79th Ann. Internat.
- SEG Mtg., Houston: 181-185.
- Bian, A., Zou, Z., Zhou, H. and Zhang, J., 2015. Evaluation of multi-scale full waveform inversion
- with marine vertical cable data. J. Earth Sci., 26: 481-486.
- Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, T. and Macy, B., 2009. An efficient
- multiscale method for time-domain waveform tomography. Geophysics, 74: WCC59-
- WCC68.
- Borisov, D., Singh, S. and Fuji, N., 2015. An efficient method of 3-D elastic full waveform
- inversion using a finite-difference injection method for time-lapse imaging. Geophys. J.
- Internat., 202: 1908-1922.
- Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore structures by
- 2D elastic frequency-domain full-waveform inversion. Geophysics, 74: WCC105-WCC118.
- Butzer, S., Kurzmann, A. and Bohlen, T., 2013. 3D elastic full-waveform inversion of small-scale
- heterogeneities in transmission geometry. Geophys. Prosp., 61: 1238-1251.
- Bunks, C., Saleck, M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform inversion.
- Geophysics, 60: 1457-1473.
- ADAPTIVE ENERGY COMPENSATION 283
- Byrd, H., Lu, P., Nocedal, J. and Zhu, C., 1995. A limited memory algorithm for bound
- constrained optimization. SIAM J. Scientif. Stat. Comput., 16: 1190-1208.
- Chi, B., Dong, L. and Liu, Y., 2015. Correlation-based reflection full-waveform inversion.
- Geophysics, 80: R189-R202.
- Collino, F. and Tsogka, C., 2001. Application of the perfectly matched absorbing layer model to
- the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66:
- 294-307.
- Etgen, J., 1986. Prestack reverse time migration of shot profiles. Stanford Explor. Proj. Rep., 50:
- 151-169.
- Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y. and Villasenor,
- A., 2013. Multiscale full waveform inversion. Geophys. J. Internat., 194: 534-556.
- Han, M., Han, L., Liu, C. and Chen, B., 2013. Frequency-domain auto-adapting full waveform
- inversion with blendedsource and frequency-group encoding. Appl. Geophys., 10: 41-52.
- Hustedt, B., Operto, S. and Virieux, J., 2004. Mixed-grid and staggered-grid finite difference
- methods for frequency domain acoustic wave modelling. Geophys. J. Internat., 157: 1269-
- Mao, J., Wu, R. and Wang, B., 2012. Multiscale full waveform inversion using GPU. Expanded
- Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-7.
- Nocedal, J. and Wright, J., 2006. Numerical Optimization, 2nd ed. Springer Science and Business
- Media, New York.
- Pratt, G., Shin, C. and Hicks, J., 1998. Gauss-Newton and full Newton methods in frequency-space
- seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
- Pratt, G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
- verification in a physical scale model. Geophysics, 64: 888-901.
- Shipp, M. and Singh, C., 2002. Two-dimensional full wavefield inversion of wide-aperture marine
- seismic streamer data. Geophys. J. Internat., 151: 325-344.
- Shin, C. and Cha, H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat.,
- 173: 922-931.
- Shin, C., Koo, N., Cha, Y. and Park, K., 2010. Sequentially ordered single-frequency 2-D acoustic
- waveform inversion in the Laplace-Fourier domain. Geophys. J. Internat., 181: 935-950.
- Shin, J., Ha, W., Jun, H., Min, D. and Shin, C., 2014. 3D Laplace-domain full waveform
- inversion using a single GPU card. Comput. Geosci., 67: 1-13.
- Sirgue, L., Etgen, J. and Albertin, U., 2008. 3D frequency domain waveform inversion using time
- domain finite difference methods. Extended Abstr., 70th EAGE Conf., Rome: F022.
- Sirgue, L. and Pratt, G., 2004. Efficient waveform inversion and imaging: a strategy for selecting
- temporal frequencies. Geophysics, 69: 231-248.
- Son, M., Kim, Y., Shin, C. and Min, D., 2013. Time domain full waveform inversion using a
- time-window and Huber function norm. J. Seismic Explor., 22: 311-338.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
- 49: 1259-1266.
- Vigh, D., Jiao, K., Watts, D. and Sun, D., 2014. Elastic full-waveform inversion application using
- multicomponent measurements of seismic data collection. Geophysics, 79: R63-R77.
- Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
- Geophysics, 74: WCC1-WCC26.
- Wang, Y. and Rao, Y., 2009. Reflection seismic waveform tomography. J. Geophys. Res., 114:
- B03304.
- Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Stekl, I.,
- Guasch, L., Win, G., Conroy, G. and Bertrand, A., 2013. Anisotropic 3D full-waveform
- inversion. Geophysics, 78: R59-R80.
- Xie, X., He, Y. and Li, P., 2013. Seismic illumination analysis and its applications in seismic
- survey design. Chin. J. Geophys., 56: 1568-1581 (in Chinese).
- Xu, K. and McMechan, G.A., 2014.2D frequency-domain elastic full waveform inversion using
- time-domain modeling and a multistep-length gradient approach. Geophysics, 79: R41-RS3.
- 284 SUN, HAN, CHEN & HAN
- Xu, S., Wang, D., Chen, F., Lambaré, G. and Zhang, Y., 2012. Inversion on reflected seismic
- wave. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-7.
- Xu, S., Wang, D., Chen, F., Zhang, Y. and Lambaré, G., 2012. Full waveform inversion for
- reflected seismic data. Extended Abstr., 74th EAGE Conf., Copenhagen: W024.
- Yang, T., Shragge, J. and Sava, P., 2013, Illumination compensation for image-domain wavefield
- tomography. Geophysics, 78, U65-U76.
- Zhou, H., Chen, S., Ren, H., Wang, H. and Chen, G., 2014. One-way wave equation least-squares
- migration based on illumination compensation. Chin. J. Geophys., 57: 726-738.
- Zhu, X., McMechan, G.A. and Gong, T., 2014. Linearized AVA inversion of PP and PS reflections
- from low-velocity targets using Zoeppritz equations. J. Seismic Explor., 23: 313-339.