ARTICLE

Adaptive energy compensation for full waveform inversion based on seismic illumination analysis

HONGYU SUN1 LIGUO HAN1 JINGYI CHEN2 MIAO HAN3
Show Less
1 College of Geo-exploration Science and Technology, Jilin University, Changchun, Jilin 130026, P. R. China. sunhongyu2014@foxmail.com, hanliguo@jlu.edu.cn,
2 Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, U.S.A. jingyi-chen@utulsa.edu,
3 Oil & Gas Survey of China Geological Survey, Beijing 100029, P.R. China. 370441419@qq.com,
JSE 2016, 25(3), 269–284;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Sun, H., Han, L., Chen, J. and Han, M., 2016. Adaptive energy compensation for full waveform inversion based on seismic illumination analysis. Journal of Seismic Exploration, 25: 269-284. Full waveform inversion (FWI) which is an advanced seismic imaging technique based on the data fitting of full wavefield simulation has become extremely important in both academic research and commercial application in recent years. During the implementation of FWI, seismic velocities of deeper and complex parts of the model cannot be well updated due to the weak energy of seismic wavefields where they have less contributions to the mismatch between observed and calculated data in the objective function, even though the large velocity contrasts do. The uneven distribution of energy may have a significantly negative effect on reconstructing velocity structures of deep and complex zones. Therefore, an adaptive energy compensation method based on seismic illumination analysis is proposed to improve the imaging quality for FWI. We discuss the effects of limited maximum offset and complex velocity structures on the inhomogeneous energy distribution of seismic wavefields in terms of 2D acoustic wave equation. Two-way seismic illumination analysis is applied to calculate wavefield energy, adaptively compensate and balance the gradients according to the reflection and transmission coefficients which represent the partitioning of seismic waves energy at an interface. Numerical examples demonstrate the improved imaging accuracy without sacrificing too much computational efficiency of FWI when the maximum is limited.

Keywords
full waveform inversion
maximum offset
seismic illumination
reflection and transmission coefficients
adaptive energy compensation
References
  1. Alford, M., Kelly, R. and Boore, M., 1974. Accuracy of finite difference modeling of the acoustic
  2. wave equation. Geophysics, 39: 834-842.
  3. Alkhalifah, T. and Plessix, R., 2014. A recipe for practical full-waveform inversion in anisotropic
  4. media: An analytical parameter resolution study. Geophysics, 79: R91-R101.
  5. Alkhalifah, T., 2015. Conditioning the full-waveform inversion gradient to welcome anisotropy.
  6. Geophysics, 80: R111-R122.
  7. Alves, C., Bulcdo, A., Filho, S., Theodoro, E. and Santos, A., 2009. Target oriented approach for
  8. illumination analysis using wave equation via FDM. Expanded Abstr., 79th Ann. Internat.
  9. SEG Mtg., Houston: 181-185.
  10. Bian, A., Zou, Z., Zhou, H. and Zhang, J., 2015. Evaluation of multi-scale full waveform inversion
  11. with marine vertical cable data. J. Earth Sci., 26: 481-486.
  12. Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, T. and Macy, B., 2009. An efficient
  13. multiscale method for time-domain waveform tomography. Geophysics, 74: WCC59-
  14. WCC68.
  15. Borisov, D., Singh, S. and Fuji, N., 2015. An efficient method of 3-D elastic full waveform
  16. inversion using a finite-difference injection method for time-lapse imaging. Geophys. J.
  17. Internat., 202: 1908-1922.
  18. Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore structures by
  19. 2D elastic frequency-domain full-waveform inversion. Geophysics, 74: WCC105-WCC118.
  20. Butzer, S., Kurzmann, A. and Bohlen, T., 2013. 3D elastic full-waveform inversion of small-scale
  21. heterogeneities in transmission geometry. Geophys. Prosp., 61: 1238-1251.
  22. Bunks, C., Saleck, M., Zaleski, S. and Chavent, G., 1995. Multiscale seismic waveform inversion.
  23. Geophysics, 60: 1457-1473.
  24. ADAPTIVE ENERGY COMPENSATION 283
  25. Byrd, H., Lu, P., Nocedal, J. and Zhu, C., 1995. A limited memory algorithm for bound
  26. constrained optimization. SIAM J. Scientif. Stat. Comput., 16: 1190-1208.
  27. Chi, B., Dong, L. and Liu, Y., 2015. Correlation-based reflection full-waveform inversion.
  28. Geophysics, 80: R189-R202.
  29. Collino, F. and Tsogka, C., 2001. Application of the perfectly matched absorbing layer model to
  30. the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66:
  31. 294-307.
  32. Etgen, J., 1986. Prestack reverse time migration of shot profiles. Stanford Explor. Proj. Rep., 50:
  33. 151-169.
  34. Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y. and Villasenor,
  35. A., 2013. Multiscale full waveform inversion. Geophys. J. Internat., 194: 534-556.
  36. Han, M., Han, L., Liu, C. and Chen, B., 2013. Frequency-domain auto-adapting full waveform
  37. inversion with blendedsource and frequency-group encoding. Appl. Geophys., 10: 41-52.
  38. Hustedt, B., Operto, S. and Virieux, J., 2004. Mixed-grid and staggered-grid finite difference
  39. methods for frequency domain acoustic wave modelling. Geophys. J. Internat., 157: 1269-
  40. Mao, J., Wu, R. and Wang, B., 2012. Multiscale full waveform inversion using GPU. Expanded
  41. Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-7.
  42. Nocedal, J. and Wright, J., 2006. Numerical Optimization, 2nd ed. Springer Science and Business
  43. Media, New York.
  44. Pratt, G., Shin, C. and Hicks, J., 1998. Gauss-Newton and full Newton methods in frequency-space
  45. seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
  46. Pratt, G., 1999. Seismic waveform inversion in the frequency domain, Part 1: Theory and
  47. verification in a physical scale model. Geophysics, 64: 888-901.
  48. Shipp, M. and Singh, C., 2002. Two-dimensional full wavefield inversion of wide-aperture marine
  49. seismic streamer data. Geophys. J. Internat., 151: 325-344.
  50. Shin, C. and Cha, H., 2008. Waveform inversion in the Laplace domain. Geophys. J. Internat.,
  51. 173: 922-931.
  52. Shin, C., Koo, N., Cha, Y. and Park, K., 2010. Sequentially ordered single-frequency 2-D acoustic
  53. waveform inversion in the Laplace-Fourier domain. Geophys. J. Internat., 181: 935-950.
  54. Shin, J., Ha, W., Jun, H., Min, D. and Shin, C., 2014. 3D Laplace-domain full waveform
  55. inversion using a single GPU card. Comput. Geosci., 67: 1-13.
  56. Sirgue, L., Etgen, J. and Albertin, U., 2008. 3D frequency domain waveform inversion using time
  57. domain finite difference methods. Extended Abstr., 70th EAGE Conf., Rome: F022.
  58. Sirgue, L. and Pratt, G., 2004. Efficient waveform inversion and imaging: a strategy for selecting
  59. temporal frequencies. Geophysics, 69: 231-248.
  60. Son, M., Kim, Y., Shin, C. and Min, D., 2013. Time domain full waveform inversion using a
  61. time-window and Huber function norm. J. Seismic Explor., 22: 311-338.
  62. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  63. 49: 1259-1266.
  64. Vigh, D., Jiao, K., Watts, D. and Sun, D., 2014. Elastic full-waveform inversion application using
  65. multicomponent measurements of seismic data collection. Geophysics, 79: R63-R77.
  66. Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics.
  67. Geophysics, 74: WCC1-WCC26.
  68. Wang, Y. and Rao, Y., 2009. Reflection seismic waveform tomography. J. Geophys. Res., 114:
  69. B03304.
  70. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Stekl, I.,
  71. Guasch, L., Win, G., Conroy, G. and Bertrand, A., 2013. Anisotropic 3D full-waveform
  72. inversion. Geophysics, 78: R59-R80.
  73. Xie, X., He, Y. and Li, P., 2013. Seismic illumination analysis and its applications in seismic
  74. survey design. Chin. J. Geophys., 56: 1568-1581 (in Chinese).
  75. Xu, K. and McMechan, G.A., 2014.2D frequency-domain elastic full waveform inversion using
  76. time-domain modeling and a multistep-length gradient approach. Geophysics, 79: R41-RS3.
  77. 284 SUN, HAN, CHEN & HAN
  78. Xu, S., Wang, D., Chen, F., Lambaré, G. and Zhang, Y., 2012. Inversion on reflected seismic
  79. wave. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas: 1-7.
  80. Xu, S., Wang, D., Chen, F., Zhang, Y. and Lambaré, G., 2012. Full waveform inversion for
  81. reflected seismic data. Extended Abstr., 74th EAGE Conf., Copenhagen: W024.
  82. Yang, T., Shragge, J. and Sava, P., 2013, Illumination compensation for image-domain wavefield
  83. tomography. Geophysics, 78, U65-U76.
  84. Zhou, H., Chen, S., Ren, H., Wang, H. and Chen, G., 2014. One-way wave equation least-squares
  85. migration based on illumination compensation. Chin. J. Geophys., 57: 726-738.
  86. Zhu, X., McMechan, G.A. and Gong, T., 2014. Linearized AVA inversion of PP and PS reflections
  87. from low-velocity targets using Zoeppritz equations. J. Seismic Explor., 23: 313-339.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing