ARTICLE

Use of split spread configuration of marine multichannel seismic data in full waveform inversion, Krishna-Godavari basin, India

MAHESWAR OJHA1 MRINAL K. SEN2 KALACH SAIN1
Show Less
1 CSIR-National Geophysical Research Institute, Hyderabad, India,
2 The University of Texas at Austin, Austin, TX 78758, U.S.A.,
JSE 2016, 25(4), 359–373;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ojha, M., Sen, M.K. and Sain, K., 2016. Use of split spread configuration of marine multichannel seismic data in full waveform inversion, Krishna-~Godavari basin, India. Journal of Seismic Exploration, 25: 359-373. Estimation of hydrate saturation from seismic reflection data is the primary goal of a gas hydrate exploration program. This requires higher resolution velocity models than can be obtained from standard traveltime tomography. Here, we employ an acoustic full waveform inversion (FWI) in frequency domain with a fixed background density to resolve for fine scale velocity structure of gas hydrate bearing sediments in Krishna Godavari offshore basin of eastern India. Conventional multichannel surface seismic data were acquired in 2010 using 360 channels with 12.5 m receiver interval, 25 m shot spacing and 100 m near offset for the investigation of gas hydrate in this region. We make use of moderate offset conventional end-on multichannel seismic data that are transformed to split spread configuration using reciprocity for use in our FWI. Data redundancy in split-spread configuration provides faster convergence and better resolution in our inversion resulting in a geologically meaningful velocity model. We make use of a smoothed interval velocity model derived from root mean square (RMS) velocity as an initial model and carried out inversion for fourteen frequencies in the range of 8 to 21 Hz at 1 Hz interval. Our results demonstrate that the split-spread dataset is able to resolve subsurface features much better than the conventional end-on data. For example, we notice marked improvement in identification of the free gas layer below the hydrate bearing sediments and many structural features like faults are conspicuous in the final image.

Keywords
split-spread marine seismic data
FWI
Krishna Godavari basin
gas hydrate
References
  1. Berenger, J.P., 1994. A perfectly matched layer for absorption of electromagnetic waves. J.
  2. Comput. Phys., 114: 185-200.
  3. Brossier, R., Operto, S. and Virieux, J., 2010. Which data residual norm for robust elastic
  4. frequency-domain full waveform inversion? Geophysics, 75: R37-R46.
  5. Chand, S. and Minshull, T.A., 2003. Seismic constraints on the effects of gas hydrate on sediment
  6. physical properties and fluid flow: a review. Geofluides, 3: 275-289.
  7. Collett, T.S., Johnson, A.H., Knapp, C.C. and Boswell, R., 2009. Natural gas hydrates: A review.
  8. In: Collett, T.S, Johnson, A.H, Knapp, C.C. and Boswell, R. (Eds.), Natural Gas Hydrates
  9. - Energy Resource Potential and Associated Geologic Hazards. AAPG Memoir 89: 146-219.
  10. Collett, T., Riedel, M., Cochran, J., Boswell, R., Presley, J., Kumar, P., Sathe, A., Sethi, A.,
  11. Lall, M. and Sibal, V., 2008. NGHP Expedition 01 Scientists, Indian National Gas hydrate
  12. Program Expedition 01 Initial Reports. DGH, India.
  13. Delescluse, M., Nedimovic, M.R. and Louden, K.E., 2011. 2D waveform tomography applied to
  14. long-streamer MCS data from the Scotian Slope. Geophysics, 76: B151-B163.
  15. Dewangan, P., Mandal, R., Jaiswal, P., Ramprasad, T. and Sriram, G., 2014. Estimation of seismic
  16. attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study
  17. from Krishna-Godavari offshore basin. Mar. Petrol. Geol., 58: 356-367.
  18. Hustedt, B., Operto, S. and Virieux, J., 2004. Mixed-grid and staggered-grid finite difference
  19. methods for frequency domain acoustic wave modelling. Geophys. J. Internat., 157: 126-
  20. Jaiswal, P., Dewangan, P., Ramprasad, T. and Zelt, C.A., 2012. Seismic characterization of
  21. hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform
  22. inversion. J. Geophys. Res., 117: B10.
  23. Jo, C.H., Shin, C. and Suh, J.H., 1996. An optimal 9-point, finite-difference, frequency-space 2D
  24. scalar extrapolator. Geophysics, 61: 529-537.
  25. Marfurt, K., 1984. Accuracy of finite-difference and finite-elements modeling of the scalar and
  26. elastic wave equation. Geophysics, 49: 533-549.
  27. Menke, W., 1984. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press Inc., New
  28. York.
  29. Mora, P.R., 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data.
  30. Geophysics, 52: 1211-1228.
  31. Mora, P.R., 1988. Elastic wavefield inversion of reflection and transmission data. Geophysics, 53:
  32. 750-759.
  33. Ojha, M. and Sain, K., 2009. Seismic attributes for identifying gas-hydrates and free-gas zones:
  34. application to the Makran accretionary prism. Episodes, 32: 264-270.
  35. Plessix, R.E., 2006. A review of the adjoint-state method for computing the gradient of a functional
  36. with geophysical applications. Geophys. J. Int., 167: 495-503.
  37. Powell, C.M., Roots, S.R. and Veevers, J.J., 1988. Pre-breakup continental extension in East
  38. Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, 155:
  39. 261-183.
  40. Pratt, R.G., 1999. Seismic waveform inversion in the frequency domain, part I: theory and
  41. verification in a physic scale model. Geophysics, 64: 888-901.
  42. Pratt, R.G., 2004. Velocity models from frequency-domain waveform tomography: past, present and
  43. future. Extended Abstr., 66th EAEG Conf., Paris.
  44. Pratt, R.G., Shin, C. and Hicks, G.J., 1998. Gauss-Newton and full Newton methods in
  45. frequency-space seismic waveform inversion. Geophys. J. Internat., 133: 341-362.
  46. Pratt, R.G., Song, Z.M., Williamson, P.R. and Warner, M., 1996. Two-dimensional velocity model
  47. from wide-angle seismic data by wavefield inversion. Geophys. J. Internat., 124: 323-340.
  48. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
  49. Multiscale imaging of complex structures from multifold wide-aperture seismic data by
  50. frequency-domain full-waveform tomography: application to a thrust belt. Geophys. J.
  51. Internat., 159: 1032-1056.
  52. SPLIT-SPREAD MARINE SEISMIC DATA 373
  53. Sain, K. and Gupta, H.K., 2012. Gas hydrates in India: Potential and Development. Gondwana
  54. Res., 22: 645-657.
  55. Sain, K., Ojha, M., Nittala, S., Ramadass, G.A., Ramaprasad, T., Das, S.K. and Gupta, H.K.,
  56. Gas-hydrates in Krishna-Godavari and Mahanadi Basins: New data. J. Geol. Soc. Ind.,
  57. 79: 553-556.
  58. Scales, J.A., Docherty, P. and Gersztenkorn, A., 1990. Regularization of nonlinear inverse
  59. problems: imaging the near-surface weathering layer. Inverse Probl., 6: 115-131.
  60. Sen, M.K., 2006. Seismic Inversion. Soc. Petrol. Engin., Dallas, TX.
  61. Singha, D.K., Chatterjee, R., Sen, M.K. and Sain, K., 2014. Pore pressure prediction in gas
  62. hydrate bearing sediments of Krishna-Godavari basin, India. Mar. Geol., 357: 1-11.
  63. Stekl, I. and Pratt, R.G., 1998. Accurate viscoelastic modeling by frequency domain finite
  64. difference using rotated operators. Geophysics, 63: 1779-1794.
  65. Tao, Y. and Sen, M.K., 2013. Frequency-domain full waveform inversion with plane-wave data.
  66. Geophysics, 78: R13-R23.
  67. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  68. 49: 1259-1266.
  69. Virieux, J. and Operto, S., 2009. An overview of full waveform inversion in exploration geophysics.
  70. Geophysics, 74: WCC127-WCC152.
  71. Wang, J., Sain, K., Wang, X., Nittala, S. and Wu, S., 2014. Characteristics of bottom-simulating
  72. reflectors for Hydrate-filled fractured sediments in Krishna-Godavari basin, eastern Indian
  73. margin. J. Petrol. Sci. Eng., 122: 515-523.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing