ARTICLE

Seismic random noise attenuation using directional total variation in the shearlet domain

DEHUI KONG1 ZHENMING PENG1 HONGYI FAN2 YANMIN HE1
Show Less
1 School of Opto-Electronic Information, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China. kongdehui_2007@sina.com,
2 Brown University, School of Engineering, 182 Hope Street, Providence, RI 02912, U.S.A. hongyi_fan@brown.edu,
JSE 2016, 25(4), 321–338;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Kong, D., Peng, Z., Fan, H. and He, Y., 2016. Seismic random noise attenuation using directional total variation in the shearlet domain. Journal of Seismic Exploration, 25: 321-338. In this paper we propose an effective seismic denoising method using directional total variation (DTV) in the shearlet domain. This approach exploits the sparseness of shearlet transform and direction sensitivity of DTV. Shearlet shrinkage has a positive effect on denoising, but suffers from Gibbs artifact which can be solved by total variation (TV). DTV is an improved method of TV using anisotropic projection and performs well for the noisy signal with a dominant direction. The seismic data can be decomposed into several subbands by shearlet transform. Every subband has its own dominant direction. Therefore applying the direction information to DTV can more effectively eliminate seismic noise. The application on synthetic data and field data shows that the proposed method is superior to shearlet transform or DTV in seismogram noise removal and feature preservation.

Keywords
shearlet
directional total variation
sparse representation
seismic random noise attenuation
References
  1. Alemie, W. and Sacchi, M.D., 2011. High-resolution three-term AVO inversion by means of a
  2. Trivariate Cauchy probability distribution. Geophysics, 76(3): R43-R55.
  3. Bayram, I. and Kamasak, M.E., 2012. Directional total variation. IEEE Sign. Process. Lett., 19:
  4. 781-784.
  5. Benning, M., Brune, C., Burger, M. and Miiller, J. 2013. Higher-order TV methods-enhancement
  6. via Bregman iteration. J. Scientif. Comput., 54: 269-310.
  7. Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM J. Imag. Sci., 3:
  8. 492-526.
  9. Canales, L.L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG Mtg.,
  10. Atlanta.
  11. Do, M.N. and Vetterli, M., 2005,.The contourlet transform: An efficient directional multiresolution
  12. image representation. IEEE Transact. Image Process., 14: 2091-2106.
  13. Easley, G.R., Labate, D. and Lim, W., 2008. Sparse directional image representations using the
  14. discrete shearlet transform. Appl. Computat. Harmon. Analys., 25: 25-46.
  15. Easley, G.R., Labate, D. and Colonna, F., 2009. Shearlet-based total variation diffusion for
  16. denoising. IEEE Transact. Image Process., 18: 260-268.
  17. Figueiredo, M., Bioucas-Dias, J. and Nowak, R., 2007. Majorization-minimization algorithms for
  18. wavelet-based image restoration. IEEE Transact. Image Process., 16: 2980-2991.
  19. Guo, K. and Labate, D, 2007. Optimally sparse multidimensional representation using shearlets:
  20. SIAM J. Mathemat. Analys., 39: 298-318.
  21. Guo, W., Qin, J. and Yin, W., 2014. A new detail-preserving regularization scheme. SIAM J.
  22. Imag. Sci., 7: 1309-1334.
  23. Haghshenas Lari, H. and Gholami, A., 2014. Curvelet-TV regularized Bregman iteration for seismic
  24. random noise attenuation. J. Appl. Geophys., 109: 233-241.
  25. Hauser, S. and Steidl, G., 2013. Convex multiclass segmentation with shearlet regularization.
  26. Internat. J. Comput. Mathemat., 90: 62-81.
  27. Puryear, C.J. and Castagna, J.P., 2008. Layer-thickness determination and stratigraphic
  28. interpretation using spectral inversion: Theory and application. Geophysics, 73(2): R37-R48.
  29. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal
  30. algorithms. Physica D: Nonlinear Phenomena, 60: 259-268.
  31. 338 KONG, PENG, FAN & HE
  32. Shan, H., Ma, J. and Yang, H., 2009. Comparisons of wavelets, contourlets and curvelets in
  33. seismic denoising. J. Appl. Geophys., 69: 103-115.
  34. Starck, J.-L., Candés, E.J. and Donoho, D.L., 2002. The curvelet transform for image denoising.
  35. IEEE Transact. Image Process., 11: 670-684.
  36. Tang, G. and Ma, J., 2011. Application of total-variation-based curvelet shrinkage for
  37. three-dimensional seismic data denoising. IEEE Geosci. Remote Sens. Lett., 8: 103-107.
  38. Yi, S., Labate, D., Easley, G.R. and Krim, H., 2009. A shearlet approach to edge analysis and
  39. detection: IEEE Transactions on Image Processing. 18 (5), 929-941.
  40. Yilmaz, O., 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data.
  41. SEG, Tulsa, OK.
  42. Zhong, T., Li, Y., Wu, N., Nie, P. and Yang, B., 2015. Statistical properties of the random noise
  43. in seismic data. J. Appl. Geophys., 118: 84-91.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing