ARTICLE

Frequency-domain full waveform inversion with rugged free surface based on variable grid finite-difference method

YUANYUAN LI ZHENCHUN LI KAI ZHANG YUZHAO LIN
Show Less
School of Geosciences, China University of Petroleum, Qingdao 266580, P.R. China.,
JSE 2016, 25(6), 543–559;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Li, Y., Li, Z., Zhang, K. and Lin, Y., 2016. Frequency-domain full waveform inversion with rugged free surface based on variable grid finite-difference method. Journal of Seismic Exploration, 25: 543-559. Full waveform inversion (FWI) is a challenging data-fitting procedure to solve model parameter reconstruction problems. But FWI with irregular topography, which is common in the real land cases, has been barely researched. For more accurately describing of the subsurface structures, we introduce the effect of surface topography in the full waveform inversion. Then we develop a frequency-domain modeling algorithm for irregular topography medium, and incorporate it into a full waveform inversion algorithm. The variable grid finite-difference method is applied to the frequency-domain modeling and inversion algorithm to improve the accuracy of results. Specifically, the computational domain near the surface is discretized by fine rectangular grids, while the rest part is discretized by coarse grids. We apply successive inversions of overlapping frequency groups and layer stripping strategy implemented with complex frequencies to the FWI algorithm to improve the stability of the iterative procedure. In the meantime, the pseudo-Hessian matrix is used to scale the gradient to improve the efficiency. In the numerical tests, we validated our algorithm with two synthetic tests consisting of a layered model and a modified dip section of the overthrust model.

Keywords
full waveform inversion
frequency-domain
variable grid
finite-difference method
rugged free surface
References
  1. Askan, A., Akcelik, V., Bielak, J., and Ghattas, O., 2007. Full waveform inversion for seismic
  2. velocity and anelastic losses in heterogeneous structures. Bull. Seismol. Soc. Am., 97: 1990-
  3. Bleibinhaus, F. and Rondenay, S., 2009. Effects of surface scattering in full-waveform inversion.
  4. Geophysics, 74: WCC69-WCC77.
  5. Brossier, R., Virieux, J. and Operto, $., 2008. Parsimonious finite-volume frequency-domain
  6. method for 2-D P-SV-wave modeling. Geophys. J. Internat., 175: 541-559.
  7. Brossier, R., Operto, S. and Virieux, J., 2009. Seismic imaging of complex onshore structures by
  8. 2D elastic frequency-domain full-waveform inversion. Geophysics, 74: WCC105-WCC118.
  9. Guo, Z.B., and Li, Z.C., 2014. Acoustic wave modeling in frequency-spatial domain with surface
  10. : topography. J. Jilin Univ. (Earth Sci. Ed.), 44: 683-693.
  11. Hicks, G.J. and Pratt, R.G., 2001. Reflection waveform inversion using local descent methods:
  12. estimating attenuation and velocity over a gas-sand deposit. Geophysics, 66: 598-612.
  13. Huang, C., and Dong, L.G., 2009. Staggered-grid high-order finite-difference method in elastic
  14. wave simulation with variable grids and local time-steps. Chin. J. Geophys. , 52: 2870-2878.
  15. (in Chinese)
  16. Hustedt, B., Operto, S. and Virieux, J., 2004. Mixed- grid and staggered-grid finite-difference
  17. methods for frequency-domain acoustic wave modeling. Geophys. J. Internat., 157:
  18. 1269-1296.
  19. Jang, U., Min, D., Choi, Y. and Shin, C., 2008. Frequency-domain elastic waveform inversion with
  20. irregular surface topography. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas:
  21. 1-5.
  22. 558 LI, LI, ZHANG & LIN
  23. Lee, H.-Y., Koo, J.M., Min, D.-J., Kwon, B.-D. and Yoo, H.S., 2010. Frequency-domain elastic
  24. full waveform inversion for VTI media. Geophys. J. Internat., 183: 2884-2904.
  25. Liu, C., Gao, F.X., Feng, X., Liu, Y. and Ren, Q.C., 2015. Memoryless quasi-Newton (MLQN)
  26. method for 2D acoustic full waveform inversion. Explor. Geophys., 46: 168-177.
  27. Liu, X.X., Yin, X.Y. and Li, H.S., 2014. Optimal variable-grid finite-difference modeling for
  28. porous media. J. Geophys. Engineer., 11: 65011-65019.
  29. Malinowski, M., Operto, S. and Ribodetti, A., 2011. High-resolution seismic attenuation imaging
  30. from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform
  31. inversion. Geophys. J. Internat., 186: 1179-1204.
  32. Operto, S., Virieux, J., Dessa, J.X. and Pascal, G., 2006. Crustal seismic imaging from multifold
  33. ocean bottom seismometer data by frequency domain full waveform tomography: Application
  34. to the eastern Nankai trough. J. Geophys. Res., 111: B09306.
  35. Prieux, V., Brossier, R., Operto, S. and Virieux, J., 2013. Multiparameter full waveform inversion
  36. of multicomponent ocean-bottom-cable data from the Valhall field. Part 1: Imaging
  37. compressional wave speed, density and attenuation. Geophys. J. Internat., 194: 1640-1664.
  38. Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A. and Dell’Aversana, P., 2004.
  39. Multiscale imaging of complex structures from multifold wide-aperture seismic data by
  40. frequency-domain full-waveform tomography: application to a thrust belt. Geophys. J.
  41. Internat., 159: 1032-1056.
  42. Robertsson, J.O.A., 1996. A numerical free-surface condition for elastic/viscoelastic finite-difference
  43. modeling in the presence of topography. Geophysics, 61: 1921-1934.
  44. Sheen, D.H., Tuncay, K., Baag, C.E. and Ortoleva, P.J., 2006. Time domain Gauss-Newton
  45. seismic waveform inversion in elastic media. Geophys. J. Internat., 167: 1373-1384.
  46. Shin, C., Yoon, K., Marfurt, K.J., Park, K., Yang, D., Lim, H.Y., Chung, S., and Shin, S., 2001.
  47. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging
  48. and inversion. Geophysics, 66: 1856-1863.
  49. Smithyman, B., Pratt, R.G., Hayles, J. and Wittebolle, R., 2009. Detecting near-surface objects
  50. with seismic waveform tomography. Geophysics, 74: WCC119-WCC127.
  51. Tarantola, A., 1984. Linearized inversion of seismic reflection data. Geophys. Prosp., 32: 998-1015.
  52. Vigh, D., Cheng, X., Jiao, K., Sun, D. and Kapoor, J., 2014. Multiparameter TTI full waveform
  53. inversion on long-offset broadband acquisition: A case study. Expanded Abstr., 84th Ann.
  54. Internat. SEG Mtg., Denver: 1-5.
  55. Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Stekl, I.,
  56. Guasch, L., Win, C., Conroy, G. and Bertrand, A., 2013. Anisotropic 3D full-waveform
  57. inversion. Geophysics, 78: R59-R80.
  58. Wei, Z.F., Gao, H.W. and Zhang, J.F., 2014. Time-domain full waveform inversion based on an
  59. irregular-grid acoustic modeling method. Chin. J. Geophys., 57: 586-594.
  60. Zhang, W. and Shen, Y., 2010. Unsplit complex frequency-shifted PML implementation using
  61. auxiliary differential equations for seismic wave modeling. Geophysics, 75: T141-T154.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing