An efficient time-domain full waveform inversion using the excitation amplitude method

Kim, A., Ryu, D. and Ha, W., 2017. An efficient time-domain full waveform inversion using the excitation amplitude method. Journal of Seismic Exploration, 26: 481-498. Time-domain full waveform inversion algorithms store the source wavefield to calculate the cross-correlation between the source and receiver wavefields to obtain the gradient direction. Saving the full source wavefield imposes an enormous burden on computer memory resources. We apply the excitation amplitude method to a full waveform inversion to reduce the memory overload. This method removes the time dimension of the source wavefield by only exploiting the maximum amplitude signals. By adopting the excitation amplitude method to store the source wavefield and to calculate the cross-correlation, we can reduce the memory requirement for a full waveform inversion by three orders of magnitude. Since the excitation amplitude method cannot handle multipathing within the source wavefield, a gradient direction obtained using this method is an approximation to the original gradient. Nevertheless, synthetic inversion examples using the Marmousi and overthrust models demonstrate the efficiency and accuracy of the proposed scheme.
- Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F. and Wyatt, K., 1994. SEG/EAEG 3-D
- modeling project: 2nd update. The Leading Edge, 13: 949-952.
- Anderson, J.E., Tan, L. and Wang, D., 2012. Time-reversal checkpointing methods for RTM and
- FWI. Geophysics, 77(4): $93-S103.
- Courant, R., Friedrichs, K. and Lewy, H., 1967. On the partial difference equations of
- mathematical physics. IBM J. Res. Developm., 11: 215-234.
- Dussaud, E., Symes, W.W., Williamson, P., Lemaistre, L., Singer, P., Denel, B. and Cherrett,
- A., 2008. Computational strategies for reverse-time migration. Expanded Abstr., 78th Ann.
- Internat. SEG Mtg., Las Vegas: 2267-2271.
- Griewank, A., 1992. Achieving logarithmic growth of temporal and spatial complexity in reverse
- automatic differentiation. Optimizat. Meth. Softw., 1: 35-54.
- Griewank, A. and Walther, A., 2000. Algorithm 799: revolve: an implementation of checkpointing
- for the reverse or adjoint mode of computational differentiation. ACM Transact. Mathemat.
- Softw., 26: 19-45.
- Ha, W., Chung, W. and Shin, C., 2012. Pseudo-Hessian matrix for the logarithmic objective
- function in full waveform inversion. J. Seismic Explor., 21: 201-214.
- Kalita, M. and Alkhalifah, T., 2016. Full-waveform inversion using the excitation representation
- of the source wavefield. Expanded Abstr., 86th Ann. Internat. SEG Mtg.,....: 1084-1088.
- Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations. Conf.
- Inverse Scatter.: Theory and Applications. Soc. Industr. Appl. Mathemat., Philadelphia:
- 206-220.
- Nguyen, B.D. and McMechan, G.A., 2013. Excitation amplitude imaging condition for prestack
- reverse-time migration. Geophysics, 78(1): S37-S46.
- Nguyen, B.D. and McMechan, G.A., 2015, Five ways to avoid storing source wavefield snapshots
- in 2D elastic prestack reverse time migration. Geophysics, 80(1), S1-S18.
- Nichols, D.E., 1996. Maximum energy traveltimes calculated in the seismic frequency band.
- Geophysics, 61(1): 253-263.
- Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a functional
- with geophysical applications. Geophys. J. Internat., 167, 495-503.
- Sheng, J., Leeds, A., Buddensiek, M. and Schuster, G.T., 2006. Early arrival waveform
- tomography on near-surface refraction data. Geophysics, 71(4): U47-U57.
- Shin, C., Jang, S. and Min, D., 2001. Improved amplitude preservation for prestack depth migration
- by inverse scattering theory. Geophys. Prosp., 49: 592-606.
- Shin, C., Ko, S., Marfurt, K.J. and Yang, D., 2003. Wave equation calculation of most energetic
- traveltimes and amplitudes for Kirchhoff prestack migration. Geophysics, 68: 2040-2042.
- Sun, W. and Fu, L.-Y., 2013. Two effective approaches to reduce data storage in reverse time
- migration. Comput. Geosci., 56: 69-75.
- Symes, W.W., 2007. Reverse time migration with optimal checkpointing. Geophysics, 72(5):
- SM213-SM221.
- Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
- 49: 1259-1266.
- Versteeg, R., 1994. The Marmousi experience: Velocity model determination on a synthetic complex
- data set. The Leading Edge, 13: 927-936.
- Wallis, J.W., Miller, T.R., Lerner, C.A. and Kleerup, E.C., 1989. Three-dimensional display in
- nuclear medicine. IEEE Transact. Medic. Imag., 8: 297-230.
- Yang, P., Gao, J. and Wang, B., 2015. A graphics processing unit implementation of time-domain
- full-waveform inversion. Geophysics, 80(3), F31-F39.