ARTICLE

An efficient time-domain full waveform inversion using the excitation amplitude method

AHREUM KIM DONGHYUN RYU WANSOO HA
Show Less
Department of Energy Resources Engineering, Pukyong National University, 45 Yongso-Ro, Nam Gu, Busan 48513, South Korea. wansooha@pknu.ac.kr,
JSE 2017, 26(5), 48–65;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Kim, A., Ryu, D. and Ha, W., 2017. An efficient time-domain full waveform inversion using the excitation amplitude method. Journal of Seismic Exploration, 26: 481-498. Time-domain full waveform inversion algorithms store the source wavefield to calculate the cross-correlation between the source and receiver wavefields to obtain the gradient direction. Saving the full source wavefield imposes an enormous burden on computer memory resources. We apply the excitation amplitude method to a full waveform inversion to reduce the memory overload. This method removes the time dimension of the source wavefield by only exploiting the maximum amplitude signals. By adopting the excitation amplitude method to store the source wavefield and to calculate the cross-correlation, we can reduce the memory requirement for a full waveform inversion by three orders of magnitude. Since the excitation amplitude method cannot handle multipathing within the source wavefield, a gradient direction obtained using this method is an approximation to the original gradient. Nevertheless, synthetic inversion examples using the Marmousi and overthrust models demonstrate the efficiency and accuracy of the proposed scheme.

Keywords
full waveform inversion
time domain
excitation amplitude
sparse cross-correlation
References
  1. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F. and Wyatt, K., 1994. SEG/EAEG 3-D
  2. modeling project: 2nd update. The Leading Edge, 13: 949-952.
  3. Anderson, J.E., Tan, L. and Wang, D., 2012. Time-reversal checkpointing methods for RTM and
  4. FWI. Geophysics, 77(4): $93-S103.
  5. Courant, R., Friedrichs, K. and Lewy, H., 1967. On the partial difference equations of
  6. mathematical physics. IBM J. Res. Developm., 11: 215-234.
  7. Dussaud, E., Symes, W.W., Williamson, P., Lemaistre, L., Singer, P., Denel, B. and Cherrett,
  8. A., 2008. Computational strategies for reverse-time migration. Expanded Abstr., 78th Ann.
  9. Internat. SEG Mtg., Las Vegas: 2267-2271.
  10. Griewank, A., 1992. Achieving logarithmic growth of temporal and spatial complexity in reverse
  11. automatic differentiation. Optimizat. Meth. Softw., 1: 35-54.
  12. Griewank, A. and Walther, A., 2000. Algorithm 799: revolve: an implementation of checkpointing
  13. for the reverse or adjoint mode of computational differentiation. ACM Transact. Mathemat.
  14. Softw., 26: 19-45.
  15. Ha, W., Chung, W. and Shin, C., 2012. Pseudo-Hessian matrix for the logarithmic objective
  16. function in full waveform inversion. J. Seismic Explor., 21: 201-214.
  17. Kalita, M. and Alkhalifah, T., 2016. Full-waveform inversion using the excitation representation
  18. of the source wavefield. Expanded Abstr., 86th Ann. Internat. SEG Mtg.,....: 1084-1088.
  19. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations. Conf.
  20. Inverse Scatter.: Theory and Applications. Soc. Industr. Appl. Mathemat., Philadelphia:
  21. 206-220.
  22. Nguyen, B.D. and McMechan, G.A., 2013. Excitation amplitude imaging condition for prestack
  23. reverse-time migration. Geophysics, 78(1): S37-S46.
  24. Nguyen, B.D. and McMechan, G.A., 2015, Five ways to avoid storing source wavefield snapshots
  25. in 2D elastic prestack reverse time migration. Geophysics, 80(1), S1-S18.
  26. Nichols, D.E., 1996. Maximum energy traveltimes calculated in the seismic frequency band.
  27. Geophysics, 61(1): 253-263.
  28. Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a functional
  29. with geophysical applications. Geophys. J. Internat., 167, 495-503.
  30. Sheng, J., Leeds, A., Buddensiek, M. and Schuster, G.T., 2006. Early arrival waveform
  31. tomography on near-surface refraction data. Geophysics, 71(4): U47-U57.
  32. Shin, C., Jang, S. and Min, D., 2001. Improved amplitude preservation for prestack depth migration
  33. by inverse scattering theory. Geophys. Prosp., 49: 592-606.
  34. Shin, C., Ko, S., Marfurt, K.J. and Yang, D., 2003. Wave equation calculation of most energetic
  35. traveltimes and amplitudes for Kirchhoff prestack migration. Geophysics, 68: 2040-2042.
  36. Sun, W. and Fu, L.-Y., 2013. Two effective approaches to reduce data storage in reverse time
  37. migration. Comput. Geosci., 56: 69-75.
  38. Symes, W.W., 2007. Reverse time migration with optimal checkpointing. Geophysics, 72(5):
  39. SM213-SM221.
  40. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics,
  41. 49: 1259-1266.
  42. Versteeg, R., 1994. The Marmousi experience: Velocity model determination on a synthetic complex
  43. data set. The Leading Edge, 13: 927-936.
  44. Wallis, J.W., Miller, T.R., Lerner, C.A. and Kleerup, E.C., 1989. Three-dimensional display in
  45. nuclear medicine. IEEE Transact. Medic. Imag., 8: 297-230.
  46. Yang, P., Gao, J. and Wang, B., 2015. A graphics processing unit implementation of time-domain
  47. full-waveform inversion. Geophysics, 80(3), F31-F39.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing