Seismic events detection in strong low-frequency background noise by complex shock filter

Li, G.-H., Li, Y. and Lu, X., 2018. Seismic events detection in strong low-frequency background noise by complex shock filter. Journal of Seismic Exploration, 27: 57-68. Low-frequency random noise in seismic exploration is difficult to suppress, because it is mixed with seismic events in time and frequency domain. In view of the line-like texture characteristic of seismic exploration and the line structure which seismic events show, we detect seismic events in noisy data by complex shock filter which is generated by incorporating the complex diffusion equation and shock filter. This method can detect seismic events in strong low-frequency random noise, and separate signals from noise effectively. Both the processing results of the synthetical records and the field data show the validity of this algorithm applied in events detection. The SNR (Signal to Noise Ratio) and resolution of seismic data is greatly enhanced.
- Bondar, I., 1992. Seismic horizon detection using image processing algorithm. Geophys.
- Prosp., 40: 785-799. DOI: 10.1111/j.1365-2478.1992.tb00552.x
- Fehmers, G.C. and Hicker, C.F.W., 2003. Fast structural interpretation with structure-
- oriented filtering. Geophysics, 68: 1286-1293. DOI: 10.1190/1.1598121
- Gilboa, G., Sochen, N.A. and Zeevi, Y.Y., 2002. Regularized shock filters and complex
- diffusion. Proc. European Conf. Computer Vision, ECCV 2002: 399-313.
- DOI: 10.1007/3-540-47969-4_27.
- Gilboa, G., Sochen, N.A. and Zeevi, Y.Y., 2004. Image enhancement and denoising by
- complex diffusion processes. IEEE Transact. Patt. Anal. Mach. Intell., 26: 1020-1036.
- DOT: 10.1109/TPAMI.2004.47.
- Koenderink, J., 1984. The structure of images. Biol. Cyber., 50: 363-370.
- DOI: 10.1007/BF00336961.
- Li, Y., Yang, B.J., Yuan, Y., Zhao, X.P. and Lin, H.B., 2006. Ability to detect weak
- effective seismic signals by utilizing chaotic vibrator system. Chin. Sci. Bull., 51:
- 3010-3017. DOI: 10.1007/s11434-006-2191-0.
- Li, Q.C. and Zhu, G.M., 2000. Singularity detection of the thin bed seismic signals with
- wavelet transform. Acta Seismol. Sin., 13: 61-66.
- DOI: 10.1007/s11589-000-0082-z .
- Liu, X.W., Xue, P. and Li, Y.D., 1989. Neural network method for tracing seismic events,
- Expanded Abstr., 59th Ann. Internat. SEG Mtg., Dallas: 719-718.
- DOI:10.1190/1.1889749 .
- Lu, S.Y. and Cheng, Y.C., 1990. An terative approach to seismic skeletonization.
- Geophysics, 55: 1312-1320. DOI: 10.1190/1.1442778.
- Nagasawa, M., 1993. Schrédinger Equations and Diffusion Theory. Monographs in Math,
- SEG, Tulsa, OK.
- Osher, S.J. and Rudin, L.L., 1990. Feature-oriented image enhancement using shock
- filters. SIAM J. Numer. Analys., 27: 919-940. DOI: 10.1137/0727053.
- Osher, S. and Rudin, L., 1991. Shocks and other nonlinear filtering applied to image
- processing. In: Tescher, A.G. (Ed.), Applications of Digital Image Processing XIV.
- Proc. SPIE, 1567: 414-431. DOI: 10.1117/12.50835._
- Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion.
- PAMI, 12: 629-639. DOI: 10.1109/34.56205.
- Witkin, A., 1983. Scale-space filtering. Internat. Joint Conf. Artificial Intellig., Karlsruhe,
- West Germany: 1019-1021. DOI: 10.1007/978-3-8348-9190-7_ 29.
- Zhang, J.H., Zhang, B.B., Zhang, Z.J., Liang, H.X. and Ge, D.M., 2015. Low-frequency
- data analysis and expansion. Appl. Geophys., 12: 212-220.
- DOI: 10.1007/s11770-015-0484-2.