ARTICLE

Seismic events detection in strong low-frequency background noise by complex shock filter

GUANGHUI LI1 YUE LI2 XUAN LU1
Show Less
1 Department of Information Engineering, Shanxi University, Taiyuan 030013, P.R. China. liguanghui0352@163.com,
2 Department of Communication and Information Engineering, Jilin University, Changchun 130012, P.R. China. liyue@jlu.edu.cn,
JSE 2018, 27(1), 57–68;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Li, G.-H., Li, Y. and Lu, X., 2018. Seismic events detection in strong low-frequency background noise by complex shock filter. Journal of Seismic Exploration, 27: 57-68. Low-frequency random noise in seismic exploration is difficult to suppress, because it is mixed with seismic events in time and frequency domain. In view of the line-like texture characteristic of seismic exploration and the line structure which seismic events show, we detect seismic events in noisy data by complex shock filter which is generated by incorporating the complex diffusion equation and shock filter. This method can detect seismic events in strong low-frequency random noise, and separate signals from noise effectively. Both the processing results of the synthetical records and the field data show the validity of this algorithm applied in events detection. The SNR (Signal to Noise Ratio) and resolution of seismic data is greatly enhanced.

Keywords
complex diffusion equation
shock filter
event detection
SNR
resolution enhancement
low-frequency random noise
References
  1. Bondar, I., 1992. Seismic horizon detection using image processing algorithm. Geophys.
  2. Prosp., 40: 785-799. DOI: 10.1111/j.1365-2478.1992.tb00552.x
  3. Fehmers, G.C. and Hicker, C.F.W., 2003. Fast structural interpretation with structure-
  4. oriented filtering. Geophysics, 68: 1286-1293. DOI: 10.1190/1.1598121
  5. Gilboa, G., Sochen, N.A. and Zeevi, Y.Y., 2002. Regularized shock filters and complex
  6. diffusion. Proc. European Conf. Computer Vision, ECCV 2002: 399-313.
  7. DOI: 10.1007/3-540-47969-4_27.
  8. Gilboa, G., Sochen, N.A. and Zeevi, Y.Y., 2004. Image enhancement and denoising by
  9. complex diffusion processes. IEEE Transact. Patt. Anal. Mach. Intell., 26: 1020-1036.
  10. DOT: 10.1109/TPAMI.2004.47.
  11. Koenderink, J., 1984. The structure of images. Biol. Cyber., 50: 363-370.
  12. DOI: 10.1007/BF00336961.
  13. Li, Y., Yang, B.J., Yuan, Y., Zhao, X.P. and Lin, H.B., 2006. Ability to detect weak
  14. effective seismic signals by utilizing chaotic vibrator system. Chin. Sci. Bull., 51:
  15. 3010-3017. DOI: 10.1007/s11434-006-2191-0.
  16. Li, Q.C. and Zhu, G.M., 2000. Singularity detection of the thin bed seismic signals with
  17. wavelet transform. Acta Seismol. Sin., 13: 61-66.
  18. DOI: 10.1007/s11589-000-0082-z .
  19. Liu, X.W., Xue, P. and Li, Y.D., 1989. Neural network method for tracing seismic events,
  20. Expanded Abstr., 59th Ann. Internat. SEG Mtg., Dallas: 719-718.
  21. DOI:10.1190/1.1889749 .
  22. Lu, S.Y. and Cheng, Y.C., 1990. An terative approach to seismic skeletonization.
  23. Geophysics, 55: 1312-1320. DOI: 10.1190/1.1442778.
  24. Nagasawa, M., 1993. Schrédinger Equations and Diffusion Theory. Monographs in Math,
  25. SEG, Tulsa, OK.
  26. Osher, S.J. and Rudin, L.L., 1990. Feature-oriented image enhancement using shock
  27. filters. SIAM J. Numer. Analys., 27: 919-940. DOI: 10.1137/0727053.
  28. Osher, S. and Rudin, L., 1991. Shocks and other nonlinear filtering applied to image
  29. processing. In: Tescher, A.G. (Ed.), Applications of Digital Image Processing XIV.
  30. Proc. SPIE, 1567: 414-431. DOI: 10.1117/12.50835._
  31. Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion.
  32. PAMI, 12: 629-639. DOI: 10.1109/34.56205.
  33. Witkin, A., 1983. Scale-space filtering. Internat. Joint Conf. Artificial Intellig., Karlsruhe,
  34. West Germany: 1019-1021. DOI: 10.1007/978-3-8348-9190-7_ 29.
  35. Zhang, J.H., Zhang, B.B., Zhang, Z.J., Liang, H.X. and Ge, D.M., 2015. Low-frequency
  36. data analysis and expansion. Appl. Geophys., 12: 212-220.
  37. DOI: 10.1007/s11770-015-0484-2.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing