ARTICLE

Methodology of waveform inversion for acoustic orthorhombic media

HUI WANG* ILYA TSVANKIN
Show Less
Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, U.S.A.,
* Present address: CGG, 10300 Town Park Drive, Houston, TX 77072, U.S.A.,
JSE 2018, 27(3), 201–226;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wang, H. and Tsvankin, I., 2018. Methodology of waveform inversion for acoustic orthorhombic media. Journal of Seismic Exploration, 27: 201-226. Three-dimensional seismic waveform inversion (WI) for anisotropic media is highly challenging due to its computational cost and trade-offs between multiple model parameters. Here, we develop a methodology of 3D WI for orthorhombic media in the acoustic approximation using two mixed-domain modeling algorithms, one of which is based on low-rank decomposition and the other on the generalized pseudospectral method. Numerical testing shows that both techniques produce kinematically accurate compressional wavefields with an acceptable computational cost. To take advantage of the superior stability and accuracy of the low-rank-decomposition-based method, it is employed to simulate both the forward and adjoint wavefields. The gradient of the data- difference objective function, however, is more convenient to obtain from the wave equations derived with the pseudospectral method. The inversion is conducted with a limited-memory version of the quasi-Newton optimization algorithm. Under the assumption that the symmetry-plane orientation is known, we invert wide-azimuth data for all six parameters of acoustic orthorhombic media. The performance of the developed wavefield-extrapolation and gradient-computation algorithms is evaluated for a medium with Gaussian anomalies in each parameter. Then we apply the method to a modified SEG/EAGE overthrust model to demonstrate the feasibility of waveform inversion and illustrate parameter trade-offs for structurally complicated orthorhombic media.

Keywords
waveform inversion
orthorhombic media
seismic anisotropy
low-rank decomposition
pseudospectral method
References
  1. Albertin, U., Shen, P., Sekar, A., Johnsen, T., Wu, C., Nihei, K. and Bube, K., 2016. 3D
  2. orthorhombic elastic full-waveform inversion in the reflection domain from
  3. hydrophone data. Expanded Abstr., 86th Ann. Internat. SEG Mtg., Dallas: 1094-
  4. Alkhalifah, T., 1998. Acoustic approximations for processing in transversely isotropic
  5. media. Geophysics, 63: 623-631.
  6. Alkhalifah, T., 2000. An acoustic wave equation for anisotropic media. Geophysics, 65:
  7. 1239-1250.
  8. Alkhalifah, T., Masmoudi, N. and Oh, J.-W., 2016. A recipe for practical full-waveform
  9. inversion in orthorhombic anisotropy. Expanded Abstr., 86th Ann. Internat. SEG
  10. Mtg., Dallas: 317-321.
  11. Aminzadeh, F., Brac, J. and Kunz, T., 1997. 3D salt and overthrust model. Modeling Series
  12. I, SEG, Tulsa, OK.
  13. Baydin, V., Charara, M. and Dovgilovich, L., 2015. Elastic orthorhombic full-waveform
  14. inversion for 3D VSP case. Extended Abstr., 77th EAGE Conf., Madrid: 1-5.
  15. Benson, S.J. and Moré, J.J., 2001. A limited memory variable metric method in
  16. subspaces and bound constrained optimization problems. Technical Report,
  17. ANL/ACS-P909-0901, Argonne National Labor.
  18. Birdus, S., Sun, J, Sun, W., Xie, Y., Gazzoli, M., Andreolli, M. and Ursulic, A., 2012.
  19. Multi-azimuth PSDM processing in the presence of orthorhombic anisotropy — a
  20. case history offshore north west Australia. Expanded Abstr., 82nd Ann. Internat.
  21. SEG Mtg., Las Vegas: 1-5.
  22. Chen, P., 2011. Full-wave seismic data assimilation: theoretical background and recent
  23. advances. Pure Appl. Geophys., 168: 1527-1552.
  24. Du, X., Fowler, P.J. and Fletcher, R.P., 2014. Recursive integral time-extrapolation
  25. methods for waves: A comparative review. Geophysics, 79(1): T9-T26.
  26. Duveneck, E. and Bakker, P.M., 2011. Stable P-wave modeling for reverse-time migration
  27. in tilted TI media. Geophysics, 76(2): S65—S75.
  28. Etgen, J.T. and Dellinger, J., 1989. Accurate wave equation modeling. Expanded Abstr.,
  29. 59th Ann. Internat. SEG Mtg., Dallas: 494-497.
  30. Fichtner, A., 2010. Full Seismic Waveform Modelling and Inversion. Springer Verlag,
  31. Berlin.
  32. Fichtner, A., Bunge, H.-P. and Igel, H.,2006a. The adjoint method in seismology: I. Theory.
  33. hys. Earth Planet. Inter., 157: 86-104.
  34. Fichtner, A., Bunge, H.-P. and Igel, H., 2006b. The adjoint method in seismology: II.
  35. Applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Inter.,
  36. 157: 105-123.
  37. Fletcher, R.P., Du, X. and Fowler, P., 2008. A new pseudo-acoustic wave equation for TI
  38. media. Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2082-2086.
  39. Fletcher, R.P., Du, X. and Fowler, P.J., 2009. Reverse time migration in tilted transversely
  40. isotropic (TTD media. Geophysics, 74(6): WCA179-WCA187.
  41. Fomel, S., Sava, P., Vlad, I, Liu, Y. and Bashkardin, V., 2013a. Madagascar: Open-source
  42. software project for multidimensional data analysis and _ reproducible
  43. computational experiments. J. Open Res. Softw., 1: e8.
  44. Fomel, S., Ying, L. and Song, X., 2013b. Seismic wave extrapolation using lowrank symbol
  45. approximation: Geophys. Prosp., 61: 526-536.
  46. Fowler, P., 2015. Some pitfalls in orthorhombic parameter estimation. Expanded Abstr.,
  47. 85th Ann. Internat. SEG Mtg., New Orleans: 493-497.
  48. Fowler, P.J., Du, X. and Fletcher, R.P., 2010. Coupled equations for reverse time
  49. migration in transversely isotropic media. Geophysics, 75(1): S$11-S22.
  50. Fowler, P.J. and King, R., 2011. Modeling and reverse time migration of orthorhombic
  51. pseudoacoustic P-waves Expanded Abstr., 81st Ann. Internat. SEG Mtg., San
  52. Antonio: 190-195.
  53. Fowler, P.J. and Lapilli, C., 2012. Generalized pseudospectral methods for orthorhombic
  54. modeling and reverse-time migration. Expanded Abstr., 82nd Ann. Internat. SEG
  55. Mtg., Las Vegas: 1-5.
  56. Gholami, Y., Brossier, R., Operto, S., Prieux, V., Ribodetti, A. and Virieux, J., 2013.
  57. Which parameterization is suitable for acoustic vertical transverse isotropic full
  58. waveform inversion? Part 2: Synthetic and real data case studies from Valhall.
  59. Geophysics, 78(2): R107-R124.
  60. Grechka, V., Zhang, L. and Rector, J.W., 2004. Shear waves in acoustic anisotropic
  61. media. Geophysics, 69: 576-582.
  62. Kamath, N. and Tsvankin, I., 2013. Full-waveform inversion of multicomponent data for
  63. horizontally layered VTI media. Geophysics, 78(5): WC113-WC121.
  64. Kamath, N. and Tsvankin, I., 2016. Elastic full-waveform inversion for VTI media:
  65. Methodology and sensitivity analysis. Geophysics, 81(2): C53-C68.
  66. Karazincir, M. and Orumwense, R., 2014. Tilted orthorhombic velocity model building and
  67. imaging of Zamzama gas field with full-azimuth land data. The Leading Edge, 33:
  68. 1024-1028.
  69. Kolda, T.G., O’Leary, D.P. and Nazareth, L., 1998. BFGS with update skipping and varying
  70. memory. SIAM J. Optimizat., 8: 1060-1083.
  71. Kosloff, D.D. and Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics,
  72. 47: 1402-1412.
  73. Lailly, P., 1983. The seismic inverse problem as a sequence of before stack migrations.
  74. Conf. Inver. Scatter.: Theory Applicat, Soc. Industr. Appl. Mathemat.,
  75. Philadelphia, PA: 206-220.
  76. Liu, D.C. and Nocedal, J., 1989. On the limited memory BFGS method for large scale
  77. optimization. Mathemat. Programm., 45: 503-528.
  78. Liu, Q. and Tromp, J. 2008. Finite-frequency sensitivity kernels for global seismic wave
  79. propagation based upon adjoint methods. Geophys. J. Internat., 174: 265-286.
  80. Luo, J. and Wu, R.-S., 2015. Seismic envelope inversion: reduction of local minima and
  81. noise resistance. Geophys. Prosp., 63: 597-614.
  82. Masmoudi, N. and Alkhalifah, T., 2016. A new parametrization for waveform inversion in
  83. acoustic orthorhombic media. Geophysics, 81(4): R157-R171.
  84. Mathewson, J., Bachrach, R., Ortin, M., Decker, M., Kainkaryam, S., Cegna, A., Paramo, P.,
  85. Vincent, K. and Kommedal, J., 2015. Offshore Trinidad tilted orthorhombic
  86. imaging of full-azimuth OBC data. Expanded Abstr., 85th Ann. Internat. SEG
  87. Mtg., New Orleans: 356-360.
  88. Nocedal, J., 1992. Theory of algorithms for unconstrained optimization. Acta Numer., 1:
  89. 199-242.
  90. Nocedal, J. and Wright, S., 2006. Numerical Optimization. Springer Science & Business
  91. Media.
  92. Oh, J.-W. and Alkhalifah, T., 2016. 3D elastic-orthorhombic anisotropic full-waveform
  93. inversion. Application to field OBC data. Expanded Abstr., 86th Ann. Internat.
  94. SEG Mtg., Dallas: 1206-1210.
  95. Pestana, R.C. and Stoffa, P.L., 2010. Time evolution of the wave equation using rapid
  96. expansion method: Geophysics, 75(4): T121-T131.
  97. Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a
  98. functional with geophysical applications. Geophys. J. Internat., 167: 495-503.
  99. Royle, G., 2011. Viscoelastic orthorhombic full wavefield inversion: Development of
  100. multiparameter inversion methods. Expanded Abstr., 81st Ann. Internat. SEG
  101. Mtg., San Antonio: 4329-4333.
  102. Song, X. and Alkhalifah, T., 2013. Modeling of pseudo-acoustic P-waves in
  103. orthorhombic media with low-rank approximation. Geophysics, 78(4): C33-C40.
  104. Tal-Ezer, H., 1986. Spectral methods in time for hyperbolic equations. SIAM J. Numer.
  105. Analys., 23: 11-26.
  106. Tal-Ezer, H., Kosloff, D. and Koren, Z., 1987. An accurate scheme for seismic forward
  107. modeling. Geophys. Prosp., 35: 479-490.
  108. Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation.
  109. Geophysics, 49: 1259-1266.
  110. Tarantola, A., 1988. Theoretical background for the inversion of seismic waveforms
  111. including elasticity and attenuation. Pure Appl. Geophys., 128: 365-399.
  112. Thiébaut, E., 2002. Optimization issues in blind deconvolution algorithms.
  113. Astronomical Telescopes and Instrumentation, Internat. Soc. Optics Photonics,
  114. Thomas, M., Mothi, S. and McGill, P., 2012. Improving subsalt images using tilted-
  115. orthorhombic RTM in Green Canyon, Gulf of Mexico. Expanded Abstr., 82nd
  116. Ann. Internat. SEG Mtg., Las Vegas: 1-5.
  117. Tromp, J., Tape, C. and Liu, Q., 2005. Seismic tomography, adjoint methods, time
  118. reversal and banana-doughnut kernels. Geophys. J. Internat., 160: 195-216.
  119. Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media.
  120. Geophysics, 62: 1292-1309.
  121. Tsvankin, I., 2012. Seismic Signatures and Analysis of Reflection Data in Anisotropic
  122. Media. SEG, Tulsa, OK.
  123. Tsvankin, I. and Grechka, V., 2011. Seismology of Azimuthally Anisotropic Media and
  124. Seismic Fracture Characterization. SEG, Tulsa, OK.
  125. Wang, S. and Wilkinson, D., 2012. Imaging for unconventional resource plays using an
  126. orthorhombic velocity model. Expanded Abstr., 82nd Ann. Internat. SEG Mtg.,
  127. Las Vegas:, 1-5.
  128. Wu, R.-S., Luo, J. and Wu, B., 2014. Seismic envelope inversion and modulation signal
  129. model. Geophysics, 79(3): WA13-WA24.
  130. Xie, Y., Zhou, B., Zhou, J., Hu, J., Xu, L., Wu, X., Lin, N., Loh, F.C., Liu, L. and Wang,
  131. Z., 2017. Orthorhombic full-waveform inversion for imaging the Luda field using
  132. wide-azimuth ocean-bottom-cable data. The Leading Edge, 36: 75-80.
  133. Zhang, HJ. and Zhang, Y., 2011. Reverse time migration in vertical and tilted
  134. orthorhombic media. Expanded Abstr., 81st Ann. Internat. SEG Mtg., San
  135. Antonio: 185-189.
  136. Zhang, Y. and Zhang, G., 2009. One-step extrapolation method for reverse time
  137. migration. Geophysics, 74(4): A29-A33.
  138. Zhou, H., Zhang, G. and Bloor, R., 2006a. An anisotropic acoustic wave equation for
  139. modeling and migration in 2D TTI media. Expanded Abstr., 76th Ann. Internat.
  140. SEG Mtg., New Orleans: 194-198.
  141. Zhou, H., Zhang, G. and Bloor, R., 2006b. An anisotropic acoustic wave equation for VTI
  142. media. Extended Abstr., 68th EAGE Conf., Vienna: 1-5.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing