ARTICLE

Sobel edge detection and its application in LMD-based seismic fault detection

KAI BAI1 HUIQUN XU2,3 XIAOYU SHE3
Show Less
1 School of Computer Science, Yangtze University, Jingzhou 434023, Hubei, P.R. China.,
2 Working Station for Postdoctoral Scientific Research, PetroChina Dagang Oilfield Company, Tianjin 300280, P.R. China.,
3 School of Geophysics and Oil Resources, Yangtze University, Wuhan 430100, Hubei, P.R. China.,
JSE 2018, 27(6), 531–542;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bai, K., Xu, H.Q. and She, X.Y., 2018. Sobel edge detection and its application in LMD-based seismic fault detection. Journal of Seismic Exploration, 27: 531-542. This paper aims to find a comprehensive method for detecting edges amidst background and noise. To this end, the local mean decomposition (LMD) filter and coherence algorithm were combined into a new seismic fault detection method. The priori knowledge on the edge location was calculated by the coherence cube, and the artificial edges were eliminated by the LMD filter. Then, the Sobel algorithm was adopted to obtain the greyscales based on the coherence, and derive the seismic edges. Through comparison, it is learned that the seismic edges obtained by our method coincide with the seismic faults in the original seismic data. Therefore, the proposed method can visualize seismic faults and accelerate the interpretation process. The research findings shed new light on the edge detection in relevant fields.

Keywords
local mean decomposition (LMD)
Sobel
edge detection
seismic fault detection
References
  1. Amstutz, S. and Fehrenbach, J., 2015. Edge detection using topological gradients: A
  2. scale-space approach. J. Mathemat. Imag. Vis., 52: 249-266.
  3. doi:10.1007/s10851-015-0558-z
  4. Bahorich, M.S. and Farmer, S.L., 1995. 3D seismic discontinuity for faults and
  5. stratigraphic features: the coherence cube. The Leading Edge, 10: 1053-1058.
  6. doi: 10.1306/64eda3e8- 1724-1 1d7-8645000102c1865d
  7. Cai, C., Ding, M.Y., Zhou, C.P. and Zhang T.X., 2004. Composite edge detector based
  8. on multi-wavelet operator. J. Image Graph., 9: 134-138. doi:10.11834/jig.20040222
  9. Carter, N. and Lines, L., 2001. Fault imaging using edge detection and coherency
  10. measures on Hibernia 3-D seismic data. The Leading Edge, 20: 64-69.
  11. doi:10.1190/1.1438880
  12. Chehrazi, A., Rahimpour-Bonab, H. and Rezaee, M.R., 2013. Seismic data conditioning
  13. and neural network-based attribute selection for enhanced fault detection. Petrol.
  14. Geosci., 19: 169-183. doi:10.1144/petgeo2011-001
  15. Cohen, L., 1989. Time-frequency distributions-a review. Proc. IEEE, 77: 941-981.
  16. doi:10.1109/5.30749
  17. Di, H. and Gao, D., 2014. Gray-level transformation and Canny edge detection for 3D
  18. seismic discontinuity enhancement. Comput. Geosci., 72: 192-200.
  19. doi:10.1190/segam2013-1175.1
  20. Gersztenkorn, A. and Marfurt, K.J., 1999. Eigenstructure-based coherence computations
  21. as an aid to 3-D structural and stratigraphic mapping. Geophysics, 64: 1468-1479.
  22. doi:10.1190/1.1444651
  23. Kanopoulos, N., Vasanthavada, N. and Baker, R.L., 2002. Design of an image edge
  24. detection filter using the Sobel operator. IEEE J. Solid-State Circ., 23: 358-367.
  25. doi:10.1109/4.996
  26. Kitchen, L. and Rosenfeld, A., 2007. Edge evaluation using local edge coherence. IEEE
  27. Transact. Syst. Man Cybernet., 11: 597-605. doi:10.21236/adal09564
  28. KreSi¢-Jurié, S., 2012. Analysis of edge detection in bar code symbols: An overview and
  29. open problems. J. Appl. Mathemat., 6: 1-16. doi:10.1155/2012/758657
  30. Luo, Y., Higgs, W. and Kowalik, W., 1996. Edge detection and stratigraphic analysis
  31. using 3D seismic data. Expanded Abstr., 66th Ann. Internat. SEG Mtg., Denver:
  32. 324-331. doi:10.1190/1.1826632
  33. Marfurt K.J., Kirlin, R.L., Farmer S.L. and Bahorich M.S., 1998. 3-D seismic attributes
  34. using a semblance-based coherency algorithm. Geophysics, 63: 1150-1165.
  35. doi:10.1190/1.1444415
  36. Nadernejad, E., Sharifzadeh, S. and Hassanpour, H., 2008. Edge detection techniques:
  37. Evaluations and comparisons. Appl. Mathemat. Sci., 2: 1507-1520.
  38. Park, C., Looney, D., Hulle, M.M.V. and Mandic, D.P., 2011. The complex local mean
  39. decomposition. Neurocomput., 74: 867-875. doi:10.1016/j.neucom.2010.07.030
  40. Phillips, M. and Fomel, S., 2017. Plane-wave Sobel attribute for discontinuity
  41. enhancement in seismic images. Geophysics, 82: WB63-WB69.
  42. doi:10.1190/geo2017-0233.1
  43. Rashmi, Kumar, M. and Saxena, R., 2013. Algorithm and technique on various edge
  44. detection: a survey. Sign. Image Process., 4: 65-75. doi:10.5121/sipij.2013.4306
  45. Smith, J.S., 2005. The local mean decomposition and its application to EEG perception
  46. data. J. Roy. Soc. Interf., 2: 443-454. doi:10.1098/rsif.2005.0058
  47. Wang, W., Gao J., Li K., Ma K. and Zhang X., 2009. Structure-oriented Gaussian filter
  48. for seismic detail preserving smoothing. IEEE Internat. Conf. Image Process.,
  49. 601-604. doi:10.1109/icip.2009.5413869
  50. Xu, H.Q. and Gui, Z.X., 2011. Progress of Edge Detection Technology in Seismic
  51. Exploration. Special Oil & Gas Reservoirs, 18: 7-10.
  52. doi: 10.3969/j.issn. 1006-6535.201 1.04,002
  53. Ziou, D. and Tabbone, S., 1998. Edge Detection Techniques-An Overview. Internat. J.
  54. Pattern Recognit. Image Analys., 8: 537-559.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing