ARTICLE

An improved robust threshold for variational mode decomposition based denoising in the frequency-offset domain

YUANYUAN MA SIYUAN CAO
Show Less
The State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Changping 102249, Beijing, P.R. China,
JSE 2019, 28(3), 277–305;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Ma, Y.Y. and Cao, S.Y., 2019. An improved robust threshold for variational mode decomposition based denoising in the frequency-offset domain. Journal of Seismic Exploration, 28: 277-305. We proposed a novel robust denoising method using variational-mode decomposition (VMD) and the detrended fluctuation analysis (DFA) in the frequency- offset (f-x) domain, named robust DFA-VMD. DFA is mainly introduced to solve the problem that VMD requires the number of modes to be predefined. The scaling exponent obtained by DFA is a robust metric to measure the long-range correlations and can be used to adjust the number of intrinsic mode functions (IMFs) automatically. To reconstruct the denoised signal, a scaling exponent is also used as a threshold to identify and remove the noisy modes. We define a novel robust threshold of random noise in seismic data, because the predefined noise boundaries for other time series cannot perform perfectly when dealing with seismic data. The proposed robust DFA-VMD is an almost parameters-free denoising approach and we apply it in the (fx) domain for seismic denoising. We have verified its performance by comparing it with the results from several other methods including (f-x) deconvolution and the conventional DFA- VMD. Two synthetic examples and three field-data examples revealed the effectiveness of the proposed approach in applications to random and coherent noise attenuation.

Keywords
denoising
frequency-offset domain
adaptive filtering
variational mode decomposition (VMD)
detrended fluctuation analysis (DFA)
References
  1. Allen, J.B., 1977. Short term spectral analysis, synthetic and modification by discrete
  2. Fourier transform. IEEE Transact. Acoust., Speech Sign. Proces., 25: 235-238.
  3. Bryce, R.M. and Sprague, K.B, 2012. Revisiting detrended fluctuation analysis. Scientific
  4. Reports, 2(3): 315-320.
  5. Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG
  6. Mtg., Atlanta: 525-527.
  7. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical-mode
  8. decomposition predictive filtering. Geophysics, 79(3): V81-V91.
  9. Dragomiretskiy, K. and Zosso, D., 2014, Variational mode decomposition. IEEE
  10. Transact. Sign. Process., 62: 531-544.
  11. Geological Survey U.S., 1981. http://wiki.seg.org/wiki/ALASKA_2D_LAND_LINE_31-
  12. 81, accessed 2 September 2017.
  13. Grossmann, A. and Morlet, J., 1984. Decomposition of Hardy functions into square
  14. integrable wavelets of constant shape. SIAM J. Mathemat. Analys., 15: 723-736.
  15. Han, J. and van der Baan, M., 2015. Microseismic and seismic denoising via ensemble
  16. empirical mode decomposition and adaptive thresholding. Geophysics, 80(6):
  17. KS69-KS80.
  18. Hestenes, M.R., 1969. Multiplier and gradient methods. J. Optimizat. Theory Applicat., 4:
  19. 303-320.
  20. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung,
  21. C.C. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert
  22. spectrum for nonlinear and non-stationary time series analysis. Proc. Mathemat.
  23. Physic. Engineer. Sci., 454: 903-995.
  24. Huang, N. and Wu, Z., 2008. A review on Hilbert-Huang transform: Method and its
  25. applications to geophysical studies. Rev. Geophys., 46: RG2006.
  26. Hurst, H.E., 1951. Long-term storage capacity of reservoirs. Transact. Am. Soc. Civil
  27. Engin., 116: 770-779.
  28. Ivanova, K. and Ausloos, M, 1999. Application of the detrended fluctuation analysis
  29. (DFA) method for describing cloud breaking. Physica A - Statist. Mechan.
  30. Applicat., 274: 349-354.
  31. Jospin, M., Caminal, P., Jensen, E.W., Litvan, H., Vallverdi, M., Struys, M.M., Vereecke,
  32. HE. and Kaplan, D.T., 2007. Detrended fluctuation analysis of EEG as a measure
  33. of depth of anesthesia:. IEEE Transact. Biomed. Engineer., 54: 840-846.
  34. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. and
  35. Stanley, H.E, 2002, Multifractal detrended fluctuation analysis of nonstationary
  36. time series. Physica A — Statist. Mechan. Applicat., 316: 87-114.
  37. Leistedt, S., Dumont, M., Lanquart, J.P., Jurysta, F. and Linkowski, P., 2007.
  38. Characterization of the sleep EEG in acutely depressed men using detrended
  39. fluctuation analysis. Clinic. Neurophysiol., 118: 940-950.
  40. Leite, F.S., Rocha, A.F. and Carvalho, J.L., 2010. Matlab software for detrended
  41. fluctuation analysis of heart rate variability. Biosignals 2010 — Internat. Conf.
  42. Bio-Insp. Syst. Sign. Process.: 225-229.
  43. Li, F., Zhang, B., Verma, S. and Marfurt, KJ., 2017. Seismic signal denoising using
  44. threshold variational mode decomposition. Explor. Geophys.
  45. doi.org/10.1071/EG17004
  46. Li, F., Zhao, T., Qi, X., Marfurt, KJ. and Zhang, B, 2016. Lateral consistency preserved
  47. Variational Mode Decomposition (VMD). Expanded Abstr., 86th Ann. Internat.
  48. SEG Mtg., Dallas: 1717-1721.
  49. Liu, W., Cao, S. and Chen, Y., 2016. Applications of variational mode decomposition in
  50. seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
  51. Liu, W., Cao, S. and He, Y., 2015. Ground roll attenuation using variational mode
  52. decomposition. Extended Abstr., 77th EAGE Conf., Madrid: Th P6 06.
  53. Liu, W., Cao, S. and Wang, Z., 2017. Application of variational mode decomposition to
  54. seismic random noise reduction. J. Geophys. Engineer., 14: 888-899.
  55. Liu, Y., Yang, G., Li, M. and Yin, H,, 2016. Variational mode decomposition denoising
  56. combined the detrended fluctuation analysis. Sign. Process., 125: 349-364.
  57. Magrin-Chagnolleau, I. and Baraniuk, R., 1999. Empirical mode decomposition based
  58. time-frequency attributes. Expanded Abstr., 69th Ann. Internat. SEG Mtg.,
  59. Houston: 1949-1952.
  60. Mandic, D., Wu, Z. and Huang, N.E., 2013. Empirical mode decomposition based time-
  61. frequency analysis of multivariate signals: The power of adaptive data analysis.
  62. IEEE Sign. Process., 30(6): 74-86.
  63. Mert, A. and Akan, A, 2014. Detrended fluctuation thresholding for empirical mode
  64. decomposition based denoising. Digital Signal Processing, 32, no.2, 48-56.
  65. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E. and Goldberger, A.L,
  66. Mosaic organization of DNA nucleotides. Phys. Rev. E Statist. Phys. Plasm.
  67. Fluids Relat. Interdiscipl. Topics, 49: 1685-1689.
  68. Peng, C.K., Havlin, S., Stanley, HE. and Goldberger, A.L, 1995. Quantification of
  69. scaling exponents and crossover phenomena in nonstationary heartbeat time series.
  70. Chaos, 5: 82-87.
  71. Stockwell, R.G., Mansinha, L. and Lowe, R.P., 1996. Localization of the complex
  72. spectrum. The S-transform. IEEE Transact. Sign. Process., 44: 998-1001.
  73. Telesca, L., Lapenna, V., Macchiato, M. and Hattori, K, 2007. Nonuniform scaling
  74. behavior in ultralow-frequency geomagnetic data in relationship with seismicity.
  75. Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio: 1167-1171.
  76. Torres, M., Colominas, M., Schlotthauer, G. and Flandrin, P., 2011. A complete
  77. ensemble empirical mode decomposition with adaptive noise. IEEE Internat. Conf.
  78. Acoust., Speech Sign. Process.: 4144-4147.
  79. Upadhyay, A. and Pachori, R.B., 2015. Instantaneous voiced/non-voiced detection in
  80. speech signals based on variational mode decomposition. J. Franklin Inst., 352:
  81. 2679-2707.
  82. Wu, Z. and Huang, N.E., 2004. A study of the characteristics of white noise using the
  83. empirical mode decomposition method. Proc. Mathemat., Phys. Engineer. Sci,
  84. 460: 1597-1611.
  85. Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: A noise-
  86. assisted data analysis method. Adv. Adapt. Data Analys., 1: 1-41.
  87. Xiong, H. and Shang, P., 2017. Detrended fluctuation analysis of multivariate time series.
  88. Communicat. Nonlin. Sci. Numer. Simulat., 42: 12-21.
  89. Yu, S. and Ma, J., 2018. Complex variational mode decomposition for slop-preserving
  90. denoising. IEEE Transact. Geosci. Remote Sens., 56: 586-897.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing