An improved robust threshold for variational mode decomposition based denoising in the frequency-offset domain

Ma, Y.Y. and Cao, S.Y., 2019. An improved robust threshold for variational mode decomposition based denoising in the frequency-offset domain. Journal of Seismic Exploration, 28: 277-305. We proposed a novel robust denoising method using variational-mode decomposition (VMD) and the detrended fluctuation analysis (DFA) in the frequency- offset (f-x) domain, named robust DFA-VMD. DFA is mainly introduced to solve the problem that VMD requires the number of modes to be predefined. The scaling exponent obtained by DFA is a robust metric to measure the long-range correlations and can be used to adjust the number of intrinsic mode functions (IMFs) automatically. To reconstruct the denoised signal, a scaling exponent is also used as a threshold to identify and remove the noisy modes. We define a novel robust threshold of random noise in seismic data, because the predefined noise boundaries for other time series cannot perform perfectly when dealing with seismic data. The proposed robust DFA-VMD is an almost parameters-free denoising approach and we apply it in the (fx) domain for seismic denoising. We have verified its performance by comparing it with the results from several other methods including (f-x) deconvolution and the conventional DFA- VMD. Two synthetic examples and three field-data examples revealed the effectiveness of the proposed approach in applications to random and coherent noise attenuation.
- Allen, J.B., 1977. Short term spectral analysis, synthetic and modification by discrete
- Fourier transform. IEEE Transact. Acoust., Speech Sign. Proces., 25: 235-238.
- Bryce, R.M. and Sprague, K.B, 2012. Revisiting detrended fluctuation analysis. Scientific
- Reports, 2(3): 315-320.
- Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG
- Mtg., Atlanta: 525-527.
- Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical-mode
- decomposition predictive filtering. Geophysics, 79(3): V81-V91.
- Dragomiretskiy, K. and Zosso, D., 2014, Variational mode decomposition. IEEE
- Transact. Sign. Process., 62: 531-544.
- Geological Survey U.S., 1981. http://wiki.seg.org/wiki/ALASKA_2D_LAND_LINE_31-
- 81, accessed 2 September 2017.
- Grossmann, A. and Morlet, J., 1984. Decomposition of Hardy functions into square
- integrable wavelets of constant shape. SIAM J. Mathemat. Analys., 15: 723-736.
- Han, J. and van der Baan, M., 2015. Microseismic and seismic denoising via ensemble
- empirical mode decomposition and adaptive thresholding. Geophysics, 80(6):
- KS69-KS80.
- Hestenes, M.R., 1969. Multiplier and gradient methods. J. Optimizat. Theory Applicat., 4:
- 303-320.
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung,
- C.C. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert
- spectrum for nonlinear and non-stationary time series analysis. Proc. Mathemat.
- Physic. Engineer. Sci., 454: 903-995.
- Huang, N. and Wu, Z., 2008. A review on Hilbert-Huang transform: Method and its
- applications to geophysical studies. Rev. Geophys., 46: RG2006.
- Hurst, H.E., 1951. Long-term storage capacity of reservoirs. Transact. Am. Soc. Civil
- Engin., 116: 770-779.
- Ivanova, K. and Ausloos, M, 1999. Application of the detrended fluctuation analysis
- (DFA) method for describing cloud breaking. Physica A - Statist. Mechan.
- Applicat., 274: 349-354.
- Jospin, M., Caminal, P., Jensen, E.W., Litvan, H., Vallverdi, M., Struys, M.M., Vereecke,
- HE. and Kaplan, D.T., 2007. Detrended fluctuation analysis of EEG as a measure
- of depth of anesthesia:. IEEE Transact. Biomed. Engineer., 54: 840-846.
- Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. and
- Stanley, H.E, 2002, Multifractal detrended fluctuation analysis of nonstationary
- time series. Physica A — Statist. Mechan. Applicat., 316: 87-114.
- Leistedt, S., Dumont, M., Lanquart, J.P., Jurysta, F. and Linkowski, P., 2007.
- Characterization of the sleep EEG in acutely depressed men using detrended
- fluctuation analysis. Clinic. Neurophysiol., 118: 940-950.
- Leite, F.S., Rocha, A.F. and Carvalho, J.L., 2010. Matlab software for detrended
- fluctuation analysis of heart rate variability. Biosignals 2010 — Internat. Conf.
- Bio-Insp. Syst. Sign. Process.: 225-229.
- Li, F., Zhang, B., Verma, S. and Marfurt, KJ., 2017. Seismic signal denoising using
- threshold variational mode decomposition. Explor. Geophys.
- doi.org/10.1071/EG17004
- Li, F., Zhao, T., Qi, X., Marfurt, KJ. and Zhang, B, 2016. Lateral consistency preserved
- Variational Mode Decomposition (VMD). Expanded Abstr., 86th Ann. Internat.
- SEG Mtg., Dallas: 1717-1721.
- Liu, W., Cao, S. and Chen, Y., 2016. Applications of variational mode decomposition in
- seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
- Liu, W., Cao, S. and He, Y., 2015. Ground roll attenuation using variational mode
- decomposition. Extended Abstr., 77th EAGE Conf., Madrid: Th P6 06.
- Liu, W., Cao, S. and Wang, Z., 2017. Application of variational mode decomposition to
- seismic random noise reduction. J. Geophys. Engineer., 14: 888-899.
- Liu, Y., Yang, G., Li, M. and Yin, H,, 2016. Variational mode decomposition denoising
- combined the detrended fluctuation analysis. Sign. Process., 125: 349-364.
- Magrin-Chagnolleau, I. and Baraniuk, R., 1999. Empirical mode decomposition based
- time-frequency attributes. Expanded Abstr., 69th Ann. Internat. SEG Mtg.,
- Houston: 1949-1952.
- Mandic, D., Wu, Z. and Huang, N.E., 2013. Empirical mode decomposition based time-
- frequency analysis of multivariate signals: The power of adaptive data analysis.
- IEEE Sign. Process., 30(6): 74-86.
- Mert, A. and Akan, A, 2014. Detrended fluctuation thresholding for empirical mode
- decomposition based denoising. Digital Signal Processing, 32, no.2, 48-56.
- Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E. and Goldberger, A.L,
- Mosaic organization of DNA nucleotides. Phys. Rev. E Statist. Phys. Plasm.
- Fluids Relat. Interdiscipl. Topics, 49: 1685-1689.
- Peng, C.K., Havlin, S., Stanley, HE. and Goldberger, A.L, 1995. Quantification of
- scaling exponents and crossover phenomena in nonstationary heartbeat time series.
- Chaos, 5: 82-87.
- Stockwell, R.G., Mansinha, L. and Lowe, R.P., 1996. Localization of the complex
- spectrum. The S-transform. IEEE Transact. Sign. Process., 44: 998-1001.
- Telesca, L., Lapenna, V., Macchiato, M. and Hattori, K, 2007. Nonuniform scaling
- behavior in ultralow-frequency geomagnetic data in relationship with seismicity.
- Expanded Abstr., 77th Ann. Internat. SEG Mtg., San Antonio: 1167-1171.
- Torres, M., Colominas, M., Schlotthauer, G. and Flandrin, P., 2011. A complete
- ensemble empirical mode decomposition with adaptive noise. IEEE Internat. Conf.
- Acoust., Speech Sign. Process.: 4144-4147.
- Upadhyay, A. and Pachori, R.B., 2015. Instantaneous voiced/non-voiced detection in
- speech signals based on variational mode decomposition. J. Franklin Inst., 352:
- 2679-2707.
- Wu, Z. and Huang, N.E., 2004. A study of the characteristics of white noise using the
- empirical mode decomposition method. Proc. Mathemat., Phys. Engineer. Sci,
- 460: 1597-1611.
- Wu, Z. and Huang, N.E., 2009. Ensemble empirical mode decomposition: A noise-
- assisted data analysis method. Adv. Adapt. Data Analys., 1: 1-41.
- Xiong, H. and Shang, P., 2017. Detrended fluctuation analysis of multivariate time series.
- Communicat. Nonlin. Sci. Numer. Simulat., 42: 12-21.
- Yu, S. and Ma, J., 2018. Complex variational mode decomposition for slop-preserving
- denoising. IEEE Transact. Geosci. Remote Sens., 56: 586-897.