A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and anisotropic media

He, X.J. and Yue, X.R., 2019. A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and anisotropic media. Journal of Seismic Exploration, 28: 363-391. A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and anisotropic media is proposed in this paper, which is an extension of the existing first-order and second-order methods to higher-order cases. For this method, second-order seismic wave equations are first transformed into a first-order hyperbolic system, then local Lax-Friedrichs (LLF) numerical flux discontinuous Galerkin formulations for spatial discretization are employed, directly leading to a semi discrete ordinary differential equation (ODE) system. For time discretization, an implicit diagonal Runge-Kutta method is introduced. To avoid solving a large-scale system of linear equations, a two-step explicit iterative process is implemented. In addition, a weighting factor is introduced for the iteration to enrich the method. The basis functions we use are 1 ~ 5' order polynomials, leading to 2'°- and 6 order of spatial accuracy. Numerical properties of the high-order weighted Runge-Kutta Discontinuous Galerkin Method are investigated in detail, including numerical error, stability criteria and numerical dispersion, which validate the superiority of the high order method. The proposed method is then applied to several 2D wave propagation problems in isotropic and anisotropic media, including acoustic-elastic interface problems. Results illustrate that this method can effectively suppress numerical dispersion and provide accurate information on the wave field on coarse mesh. We also compare the proposed method with the finite difference method to investigate the computational efficiency.
- Aki, K. and Richards, P.G., 2002. Quantitative Seismology. W.H. Freeman. & Co.,
- Sausalito.
- Ainsworth, M., Monk, P. and Muniz, W., 2006. Dispersive and dissipative properties of
- discontinuous Galerkin finite element methods for the second-order wave
- equation. J. Scientif. Comput., 27: 5-40.
- Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D., 2002. Unified analysis of
- discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Analys.,
- 39: 1749-1779.
- Chaljub, E., Moczo, P., Tsuno, S., Bard, P.-Y., Kristek, J., Kaser, M., Stupazzini, M. and
- Kristekova, M., 2010. Quantitative comparison of four numerical predictions of
- 3D ground motion in the Grenoble Valley, France. Bull. Seismol. Soc. Am., 100:
- 1427-1455.
- Chen, J. and Liu, Q.H., 2013. Discontinuous Galerkin time-domain methods for
- multiscale electromagnetic simulations: A review. Proc. IEEE, 101: 242-254.
- Cockburn, B. and Shu, C.-W., 1989. TVB Runge-Kutta local projection discontinuous
- Galerkin finite element method for conservation laws. II. General framework.
- Mathemat. Computat., 52: 411-435.
- Cockburn, B. and Shu, C.-W., 2001. Runge-Kutta discontinuous Galerkin methods for
- convection-dominated problems. J. Scient. Comput., 16: 173-261.
- Dablain, M.A., 1986. The application of high-order differencing to the scalar wave
- equation. Geophysics, 51: 54-66.
- De Basabe, J.D. and Sen, M.K., 2010. Stability of the high-order finite elements for
- acoustic or elastic wave propagation with high-order time stepping. Geophys. J.
- Internat., 181: 577-590.
- De Basabe, J.D., Sen, M.K. and Wheeler, M.F., 2008. The interior penalty discontinuous
- Galerkin method for elastic wave propagation: grid dispersion. Geophys. J.
- Internat., 175: 83-93.
- de la Puente, J., Ampuero, J.P. and Kaser, M., 2009. Dynamic rupture modeling on
- unstructured meshes using a discontinuous Galerkin method. J. Geophys. Res.,
- Solid Earth: 114.
- Dolejsi, V., Holik, M. and Hozman, J., 2011. Efficient solution strategy for the
- semi-implicit discontinuous Galerkin discretization of the Navier-Stokes
- equations. J. Comput. Phys., 230: 4176-4200.
- Dumbser, M. and Munz, C.-D., 2005. ADER discontinuous Galerkin schemes for
- aeroacoustics. Compt. Rend. Mécan., 333: 683-687.
- Etienne, V., Chaljub, E., Virieux, J. and Glinsky, N., 2010. An hp-adaptive discontinuous
- Galerkin finite-element method for 3-D elastic wave modelling. Geophys. J.
- Internat., 183: 941-962.
- Hairer, E., Norsett, S.P. and Wanner, G., 2006. Solving ordinary differential
- equations:nonstiff problems. Springer-Verlag.
- He, X. , Yang, D. and Zhou, Y., 2014. A weighted Runge-Kutta discontinuous Galerkin
- method for wavefield modelling. Expanded Abstr., 84th Ann. Internat. SEG Mtg.,
- Denver.
- He, X., Yang, D. and Wu, H., 2015. A weighted Runge-Kutta discontinuous Galerkin
- method for wavefield modelling. Geophys. J. Internat., 200: 1389-1410.
- He, X., Yang, D., Ma, X. and Lang, C., 2019. Dispersion-dissipation analysis of the
- triangle-based discontinuous Galerkin method for scalar wave equation. Geophys.
- J. Internat., 218: 1174-1198.
- Hesthaven, J.S. and Warburton, T., 2007. Nodal Discontinuous Galerkin Methods:
- Algorithms, Analysis, and Applications. Springer Science and Business Media,
- New York.
- Hu, F.Q., Hussaini, M. and Rasetarinera, P., 1999. An analysis of the discontinuous
- Galerkin method for wave propagation problems. J. Computat. Phys., 151:
- 921-946.
- Kaser, M. and Dumbser, M., 2006. An arbitrary high-order discontinuous Galerkin
- method for elastic waves on unstructured meshes - I. The two-dimensional
- isotropic case with external source terms. Geophys. J. Internat., 166: 855-877.
- Kaser, M. and Dumbser, M., 2008. A highly accurate discontinuous Galerkin method for
- complex interfaces between solids and moving fluids. Geophysics, 73: T23-T35.
- Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
- three-dimensional seismic wave propagation. Geophys. J. Internat., 139: 806-822.
- Lambrecht, L., Lamert, A., Friederich, W., Moller, T. and Boxberg, M., 2017. A nodal
- discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex
- geological media. Geophys. J. Internat., 212: 1570-1587.
- LeVeque, R.J., 2002. Finite volume methods for hyperbolic problems. Cambridge
- University Press, Cambridge.
- Marfurt, K.J., 1984. Accuracy of finite-difference and finite-element modeling of the
- scalar and elastic wave equations. Geophysics, 49: 533-549.
- Minisini, S., Zhebel, E., Kononov, A. and Mulder, W.A., 2013. Local time stepping with
- the discontinuous Galerkin method for wave propagation in 3D heterogeneous
- media. Geophysics, 78: T67-T77.
- Moczo, P., Kristek, J. and Halada, L., 2000. 3D Fourth-order staggered-grid
- finite-difference schemes. Stability and grid dispersion. Bull. Seismol. Soc. Am.,
- 90: 587-603.
- Pelties, C., Puente, J., Ampuero, J.P., Brietzke, G.B. and Kaser, M., 2012. Three -
- dimensional dynamic rupture simulation with a high - order discontinuous
- Galerkin method on unstructured tetrahedral meshes. J. Geophys. Res.: Solid
- Earth, 117.
- Reed, W.H. and Hill, T., 1973. Triangular mesh methods for the neutron transport
- equation. Los Alamos Scientific Lab., NM, U.S.A.
- Renac, F., Marmignon, C. and Coquel, F., 2012. Time implicit high-order discontinuous
- galerkin method with reduced evaluation cost. SIAM J. Scient. Comput., 34:
- A370-A394.
- Riviere, B. and Wheeler, M.F., 2003. Discontinuous finite element methods for acoustic
- and elastic wave problems. Contemp. Mathemat., 329: 271-282.
- Segawa, H., Luo, H. and Nourgaliev, R., 2011. A Diagonally Implicit Runge-Kutta
- Method for the Discontinuous Galerkin Solutions of the Navier-Stokes Equations.
- 49th AIAA Aerospace Sciences Mtg. including the New Horizons Forum and
- Aerospace Expos., 685.
- Tong, P., Chen, C.-W., Komatitsch, D., Basini, P. and Liu, Q., 2014. High-resolution
- seismic array imaging based on an SEM-FK hybrid method. Geophys. J. Internat.,
- 197: 369-395.
- Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress
- finite-difference method. Geophysics, 51: 1933-1942.
- Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: A
- predictor-corrector method of the implicit Runge-Kutta scheme. J. Seismic
- Explor., 23: 431-462.
- Yang, D., Peng, J., Lu, M. and Terlaky, T., 2006. Optimal nearly analytic discrete
- approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96:
- 1114-1130.
- Yang, D., Wang, N. and Liu, E., 2012. A strong stability-preserving predictor-corrector
- method for the simulation of elastic wave propagation in anisotropic media.
- Commun. Computat. Phys., 12: 1006-1032.
- Zhang, J., 1997. Quadrangle-grid velocity-stress finite-difference method for
- elastic-wave-propagation simulation. Geophys. J. Internat., 131: 127-134.