ARTICLE

A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and anisotropic media

XIJUN HE1,2 XIAORUI YUE2
Show Less
1 Department of Mathematics, School of Mathematics and Statistics, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China,
2 Department of Mathematics, College of Science, Hainan University, Haikou 570228, P.R. China,
JSE 2019, 28(4), 363–390;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

He, X.J. and Yue, X.R., 2019. A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and anisotropic media. Journal of Seismic Exploration, 28: 363-391. A high-order weighted Runge-Kutta Discontinuous Galerkin Method for solving 2D acoustic and elastic wave equations in isotropic and anisotropic media is proposed in this paper, which is an extension of the existing first-order and second-order methods to higher-order cases. For this method, second-order seismic wave equations are first transformed into a first-order hyperbolic system, then local Lax-Friedrichs (LLF) numerical flux discontinuous Galerkin formulations for spatial discretization are employed, directly leading to a semi discrete ordinary differential equation (ODE) system. For time discretization, an implicit diagonal Runge-Kutta method is introduced. To avoid solving a large-scale system of linear equations, a two-step explicit iterative process is implemented. In addition, a weighting factor is introduced for the iteration to enrich the method. The basis functions we use are 1 ~ 5' order polynomials, leading to 2'°- and 6 order of spatial accuracy. Numerical properties of the high-order weighted Runge-Kutta Discontinuous Galerkin Method are investigated in detail, including numerical error, stability criteria and numerical dispersion, which validate the superiority of the high order method. The proposed method is then applied to several 2D wave propagation problems in isotropic and anisotropic media, including acoustic-elastic interface problems. Results illustrate that this method can effectively suppress numerical dispersion and provide accurate information on the wave field on coarse mesh. We also compare the proposed method with the finite difference method to investigate the computational efficiency.

Keywords
seismic wave equation
high-order
Discontinuous Galerkin Method
DGM
weighted
numerical dispersion
References
  1. Aki, K. and Richards, P.G., 2002. Quantitative Seismology. W.H. Freeman. & Co.,
  2. Sausalito.
  3. Ainsworth, M., Monk, P. and Muniz, W., 2006. Dispersive and dissipative properties of
  4. discontinuous Galerkin finite element methods for the second-order wave
  5. equation. J. Scientif. Comput., 27: 5-40.
  6. Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D., 2002. Unified analysis of
  7. discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Analys.,
  8. 39: 1749-1779.
  9. Chaljub, E., Moczo, P., Tsuno, S., Bard, P.-Y., Kristek, J., Kaser, M., Stupazzini, M. and
  10. Kristekova, M., 2010. Quantitative comparison of four numerical predictions of
  11. 3D ground motion in the Grenoble Valley, France. Bull. Seismol. Soc. Am., 100:
  12. 1427-1455.
  13. Chen, J. and Liu, Q.H., 2013. Discontinuous Galerkin time-domain methods for
  14. multiscale electromagnetic simulations: A review. Proc. IEEE, 101: 242-254.
  15. Cockburn, B. and Shu, C.-W., 1989. TVB Runge-Kutta local projection discontinuous
  16. Galerkin finite element method for conservation laws. II. General framework.
  17. Mathemat. Computat., 52: 411-435.
  18. Cockburn, B. and Shu, C.-W., 2001. Runge-Kutta discontinuous Galerkin methods for
  19. convection-dominated problems. J. Scient. Comput., 16: 173-261.
  20. Dablain, M.A., 1986. The application of high-order differencing to the scalar wave
  21. equation. Geophysics, 51: 54-66.
  22. De Basabe, J.D. and Sen, M.K., 2010. Stability of the high-order finite elements for
  23. acoustic or elastic wave propagation with high-order time stepping. Geophys. J.
  24. Internat., 181: 577-590.
  25. De Basabe, J.D., Sen, M.K. and Wheeler, M.F., 2008. The interior penalty discontinuous
  26. Galerkin method for elastic wave propagation: grid dispersion. Geophys. J.
  27. Internat., 175: 83-93.
  28. de la Puente, J., Ampuero, J.P. and Kaser, M., 2009. Dynamic rupture modeling on
  29. unstructured meshes using a discontinuous Galerkin method. J. Geophys. Res.,
  30. Solid Earth: 114.
  31. Dolejsi, V., Holik, M. and Hozman, J., 2011. Efficient solution strategy for the
  32. semi-implicit discontinuous Galerkin discretization of the Navier-Stokes
  33. equations. J. Comput. Phys., 230: 4176-4200.
  34. Dumbser, M. and Munz, C.-D., 2005. ADER discontinuous Galerkin schemes for
  35. aeroacoustics. Compt. Rend. Mécan., 333: 683-687.
  36. Etienne, V., Chaljub, E., Virieux, J. and Glinsky, N., 2010. An hp-adaptive discontinuous
  37. Galerkin finite-element method for 3-D elastic wave modelling. Geophys. J.
  38. Internat., 183: 941-962.
  39. Hairer, E., Norsett, S.P. and Wanner, G., 2006. Solving ordinary differential
  40. equations:nonstiff problems. Springer-Verlag.
  41. He, X. , Yang, D. and Zhou, Y., 2014. A weighted Runge-Kutta discontinuous Galerkin
  42. method for wavefield modelling. Expanded Abstr., 84th Ann. Internat. SEG Mtg.,
  43. Denver.
  44. He, X., Yang, D. and Wu, H., 2015. A weighted Runge-Kutta discontinuous Galerkin
  45. method for wavefield modelling. Geophys. J. Internat., 200: 1389-1410.
  46. He, X., Yang, D., Ma, X. and Lang, C., 2019. Dispersion-dissipation analysis of the
  47. triangle-based discontinuous Galerkin method for scalar wave equation. Geophys.
  48. J. Internat., 218: 1174-1198.
  49. Hesthaven, J.S. and Warburton, T., 2007. Nodal Discontinuous Galerkin Methods:
  50. Algorithms, Analysis, and Applications. Springer Science and Business Media,
  51. New York.
  52. Hu, F.Q., Hussaini, M. and Rasetarinera, P., 1999. An analysis of the discontinuous
  53. Galerkin method for wave propagation problems. J. Computat. Phys., 151:
  54. 921-946.
  55. Kaser, M. and Dumbser, M., 2006. An arbitrary high-order discontinuous Galerkin
  56. method for elastic waves on unstructured meshes - I. The two-dimensional
  57. isotropic case with external source terms. Geophys. J. Internat., 166: 855-877.
  58. Kaser, M. and Dumbser, M., 2008. A highly accurate discontinuous Galerkin method for
  59. complex interfaces between solids and moving fluids. Geophysics, 73: T23-T35.
  60. Komatitsch, D. and Tromp, J., 1999. Introduction to the spectral element method for
  61. three-dimensional seismic wave propagation. Geophys. J. Internat., 139: 806-822.
  62. Lambrecht, L., Lamert, A., Friederich, W., Moller, T. and Boxberg, M., 2017. A nodal
  63. discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex
  64. geological media. Geophys. J. Internat., 212: 1570-1587.
  65. LeVeque, R.J., 2002. Finite volume methods for hyperbolic problems. Cambridge
  66. University Press, Cambridge.
  67. Marfurt, K.J., 1984. Accuracy of finite-difference and finite-element modeling of the
  68. scalar and elastic wave equations. Geophysics, 49: 533-549.
  69. Minisini, S., Zhebel, E., Kononov, A. and Mulder, W.A., 2013. Local time stepping with
  70. the discontinuous Galerkin method for wave propagation in 3D heterogeneous
  71. media. Geophysics, 78: T67-T77.
  72. Moczo, P., Kristek, J. and Halada, L., 2000. 3D Fourth-order staggered-grid
  73. finite-difference schemes. Stability and grid dispersion. Bull. Seismol. Soc. Am.,
  74. 90: 587-603.
  75. Pelties, C., Puente, J., Ampuero, J.P., Brietzke, G.B. and Kaser, M., 2012. Three -
  76. dimensional dynamic rupture simulation with a high - order discontinuous
  77. Galerkin method on unstructured tetrahedral meshes. J. Geophys. Res.: Solid
  78. Earth, 117.
  79. Reed, W.H. and Hill, T., 1973. Triangular mesh methods for the neutron transport
  80. equation. Los Alamos Scientific Lab., NM, U.S.A.
  81. Renac, F., Marmignon, C. and Coquel, F., 2012. Time implicit high-order discontinuous
  82. galerkin method with reduced evaluation cost. SIAM J. Scient. Comput., 34:
  83. A370-A394.
  84. Riviere, B. and Wheeler, M.F., 2003. Discontinuous finite element methods for acoustic
  85. and elastic wave problems. Contemp. Mathemat., 329: 271-282.
  86. Segawa, H., Luo, H. and Nourgaliev, R., 2011. A Diagonally Implicit Runge-Kutta
  87. Method for the Discontinuous Galerkin Solutions of the Navier-Stokes Equations.
  88. 49th AIAA Aerospace Sciences Mtg. including the New Horizons Forum and
  89. Aerospace Expos., 685.
  90. Tong, P., Chen, C.-W., Komatitsch, D., Basini, P. and Liu, Q., 2014. High-resolution
  91. seismic array imaging based on an SEM-FK hybrid method. Geophys. J. Internat.,
  92. 197: 369-395.
  93. Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress
  94. finite-difference method. Geophysics, 51: 1933-1942.
  95. Wang, N. and Zhou, Y., 2014. A weak dispersion 3D wave field simulation method: A
  96. predictor-corrector method of the implicit Runge-Kutta scheme. J. Seismic
  97. Explor., 23: 431-462.
  98. Yang, D., Peng, J., Lu, M. and Terlaky, T., 2006. Optimal nearly analytic discrete
  99. approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96:
  100. 1114-1130.
  101. Yang, D., Wang, N. and Liu, E., 2012. A strong stability-preserving predictor-corrector
  102. method for the simulation of elastic wave propagation in anisotropic media.
  103. Commun. Computat. Phys., 12: 1006-1032.
  104. Zhang, J., 1997. Quadrangle-grid velocity-stress finite-difference method for
  105. elastic-wave-propagation simulation. Geophys. J. Internat., 131: 127-134.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing