ARTICLE

Pre-stack texture-based semi-supervised seismic facies analysis using global optimization

HANPENG CAI QINGPING WU HAIYANG REN HUIQIANG LI QING QIN
Show Less
School of Resources and Environment & Center of information geoscience, University of Electronic Science and Technology of China, Sichuan 611731, P.R. China,
JSE 2019, 28(6), 513–532;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Cai, H.P., Wu, Q.P., Ren, H.Y., Li, H.Q. and Qin, Q., 2019. Pre-stack texture-based semi-supervised seismic facies analysis using global optimization. Journal of Seismic Exploration, 28: 513-532. There are some problems in conventional seismic facies analysis methods, such as easily plunge into local optimal solution, low sensitivity and without using prior knowledge. To solve the above-mentioned problems, we propose a pre-stack texture-based semi-supervised seismic facies analysis method with global optimization. Firstly, the pre-stack seismic texture attributes are introduced to highlighting the information of micro-spatial and amplitude variation with azimuth/offset in seismic reflection data. Then, the self-organizing map (SOM) neural network is used to compress a large amount of redundant information of the samples on the premise of maintaining the topology of the data. Finally, the artificial bee colony (ABC) algorithm is used to realize the global optimization of the clustering of neurons in the SOM output layer under the constraints of prior knowledge. Besides, according to the probability estimation results based on the probabilistic neural network (PNN), we define the confidence measures to quantitative analysis the classification results. The synthetic test and practical application results show that the proposed method can not only significantly improve the recognition ability of the seismic microfacies, but also improve the horizontal resolution and the accuracy of the seismic facies map. These satisfactory results illustrate the proposed method is an effective tool for seismic facies analysis.

Keywords
seismic facies analysis
pre-stack seismic texture attributes
semi-supervised learning
self-organizing map (SOM)
artificial bee colony (ABC)
probabilistic neural network (PNN)
References
  1. Aki, K. and Richards, P., 1980. Quantitative Seismology, Theory and Methods. W.H.
  2. Freeman and Co., San Francisco.
  3. Altinel, B. and Ganiz, M.C., 2016. A new hybrid semi-supervised algorithm for text
  4. classification with class-based semantics. Knowledge-Based Syst., 108: 50-64.
  5. Banharnsakun, A., Achalakul, T. and Sirinaovakul, B., 2011. The best-so-far selection in
  6. artificial bee colony algorithm. Appl. Soft Comput. J., 11(2):2888-2901.
  7. Angelo, M.S., Matos, M.C. and Marfurt. K.J., 2009. Integrated seismic texture
  8. segmentation and clustering analysis to delineate reservoir geometry. Expanded
  9. Abstr., 79th Ann. Internat. SEG Mtg., Houston: 1107-1111.
  10. Chopra, S. and Marfurt, K.J., 2005. Seismic attributes - A historical perspective.
  11. Geophysics, 70(5): 3SO-28SO.
  12. Chopra, S. and Alexeev, V., 2006. Applications of texture attribute analysis to 3D seismic
  13. data. The Leading Edge, 25(8): 934-940.
  14. Chuai, X.Y., Wang, S.X., Shi, P.D., Wei, X. and Chen, W., 2014. Applications of texture
  15. attribute analysis to seismic interpretation. J. Cent. South Univ., 21: 3617-3626.
  16. de Matos, M.C., Osorio, P.L. and Johann, P.R., 2007. Unsupervised seismic facies
  17. analysis using wavelet transform and self-organizing maps. Geophysics, 72(1):
  18. P9-P21.
  19. Dornaika, F. and Traboulsi, Y.E., 2017. Matrix exponential based semi-supervised
  20. discriminant embedding for image classification. Pattern Recognit., 61: 92-103.
  21. Erman, J., Mahanti, A., Arlitt, M., Cohen, I. and Williamson, C., 2007. Offline/real time
  22. traffic classification using semi-supervised learning. Perform. Evaluat., 64:
  23. 1194-1213.
  24. Estévez, P., Principe, J. and Zegers, P., 2012. Advances in Self-Organizing Maps. 9th
  25. Internat. Workshop, WSOM 2012, Santiago, Chile, December 12-14. Proc.,
  26. Advances in Intelligent Systems and Computing.
  27. Gao, D.L., 2006. Structure-oriented texture model regression for seismic structure
  28. visualization and interpretation. Gulf Coast Assoc. Geol. Soc. Transact., 56(3):
  29. 207-216.
  30. Gao, D.L., 2011. Latest developments in seismic texture analysis for subsurface structure,
  31. facies, and reservoir characterization: A review. Geophysics, 76(2): W1-W13.
  32. Guillen, P., Larrazabal, G., Gonzalez, G. and Sineva, D., 2015. Detecting salt body using
  33. texture classification. 14th Internat. Congr. Brazil. Geophys. Soc., Rio de Janeiro:
  34. 1155-1158.
  35. Haralick, R., Shanmugam K. and Dinstein, IL, 1973. Textural features for image
  36. classification. IEEE Transact. Systems, Man., Cybernet., 23: 610-621.
  37. Hong, Y. and Zhu, W.P., 2015. Spatial co-training for semi-supervised image
  38. classification. Patt. Recognit. Lett., 63: 59-65.
  39. Jassar, K.K. and Dhindsa, K.S., 2016. Comparative study and performance analysis of
  40. clustering algorithms. IJCA Proc. Internat. Conf. ICT for Healthcare, ICTHC
  41. 2015: 1-6.
  42. Lima, L.A., Gérnitz, N., Varella, L.E., Vellasco, M., Miiller, K. and Nakajima, S., 2017.
  43. Porosity estimation by semi-supervised learning with sparsely available labeled
  44. samples. Comput. Geosci., 106: 33-48.
  45. Marfurt, K.J., 2014. Seismic attributes and the road ahead. Expanded Abstr., 84th Ann.
  46. Internat. SEG Mtg., Denver: 4421-4426.
  47. Marroquin, I.D., Brault, J.J. and Hart, B.S., 2009. A visual data-mining methodology for
  48. seismic facies analysis. Part 1 - Testing and comparison with other unsupervised
  49. clustering methods. Geophysics, 74(1): P1-P11.
  50. Nivlet, P., 2007. Uncertainties in seismic facies analysis for reservoir characterisation or
  51. monitoring. Causes and consequences. Oil Gas Sci. Technol., 62: 225-235.
  52. Portela, N.M., Cavalcanti, G.D.C. and Ren, I.T., 2014. Semi-supervised clustering for
  53. MR brain image segmentation. Expert Syst. Applicat., 41: 1492-1497.
  54. Qi, J., Lin, T.F., Zhao, T., Li, F-Y. and Marfurt, K.J., 2016. Semisupervised multiattribute
  55. seismic facies analysis. Interpretation, 4(1): SB91-SB106.
  56. Roussinov, D.G. and Chen, H., 1998. A scalable self-organizing map algorithm for
  57. textual classification: a neural network approach to thesaurus generation.
  58. Communicat. Cognit. Artific. Intellig. Spring, 15: 81-112.
  59. Roy, A., Romero-Pelaez, A.S., Kwiatkowski, T.J. and Marfurt, K.J, 2014. Generative
  60. topographic mapping for seismic facies estimation of a carbonate wash, Veracruz
  61. Basin, southern Mexico. Interpretation, 2(1): SA31-SA47.
  62. Ruffo, P., Corradi, A., Corrao, A., Corrao, C.A. and Visentin, C., 2007. 3D hydrocarbon
  63. migration in alternate sand-shale environment through percolation technique.
  64. AAPG Hedberg Conf., The Hague, The Netherlands.
  65. Saha, S., Alok, A.K. and Ekbal, A., 2016. Brain image segmentation using
  66. semi-supervised clustering. Expert Syst. Applicat., 52: 50-63.
  67. Shafiq, M.A., Wang, Z., Amin, A., Hegazy, T., Deriche, M. and Al Regib, G., 2015.
  68. Detection of salt-dome boundary surfaces in migrated seismic volumes using
  69. gradient of textures. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New
  70. Orleans: 1811-1815.
  71. Song, C.Y., Liu, Z.N., Cai, H.P., Qian, F. and Hu, G.M., 2016. Pre-stack-texture-based
  72. reservoir characteristics and seismic facies analysis. Appl. Geophys., 13: 69-79.
  73. Song, C.Y., Liu, Z.N., Cai, H.P., Wang, Y.J., Li, X.M. and Hu, G.M., 2017.
  74. Unsupervised seismic facies analysis with spatial constraints using regularized
  75. fuzzy c-means. J. Geophys. Engineer., 14:1535-1543.
  76. Song, C.Y., Liu, Z.N., Wang, Y.J., Li, X.M. and Hu, G.M., 2017. Multi-waveform
  77. classification for seismic facies analysis. Comput. Geosci., 101: 1-9.
  78. Song, C.Y., Liu, Z.N., Wang, Y.J., Xu, F., Li, X.M. and Hu, G.M., 2018. Adaptive phase
  79. k-means algorithm for waveform classification. Explor. Geophys., 49: 213-219.
  80. Tamir, H. and Ghassan, A., 2014. Texture attributes for detecting salt bodies in seismic
  81. data. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 1455-1458.
  82. Ulaby, R.T., Kouyate, F., Brisco, B. and Williams, T.H.L., 1986. Textural information in
  83. SAR images. IEEE Transact. Geosci. Remote Sens., 24: 235-245.
  84. Yenugu, M., Marfurt, K.J. and Matson, S., 2010. Seismic texture analysis for reservoir
  85. prediction and characterization. The Leading Edge, 29: 1116-1121.
  86. Zhao, T., Jayaram, V., Roy, A. and Marfurt, K.J., 2015. A comparison of classification
  87. techniques for seismic facies recognition. Interpretation, 3(4): SAE29-SAES58.
  88. Zhang, W., Tang, X.J. and Yoshida, T., 2015. TESC: An approach to TExt classification
  89. using semi-supervised clustering. Knowledge-Based Syst., 75: 152-160.
  90. Zhang, Y., Zheng, X.D., Li, J.S., Lu, J.T., Cao, C.Y. and Sui, J.K., 2015. Unsupervised
  91. seismic facies analysis technology based on SOM and PSO. Chin. J. Geophys., 58:
  92. 3412-3423.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing