Pre-stack texture-based semi-supervised seismic facies analysis using global optimization

Cai, H.P., Wu, Q.P., Ren, H.Y., Li, H.Q. and Qin, Q., 2019. Pre-stack texture-based semi-supervised seismic facies analysis using global optimization. Journal of Seismic Exploration, 28: 513-532. There are some problems in conventional seismic facies analysis methods, such as easily plunge into local optimal solution, low sensitivity and without using prior knowledge. To solve the above-mentioned problems, we propose a pre-stack texture-based semi-supervised seismic facies analysis method with global optimization. Firstly, the pre-stack seismic texture attributes are introduced to highlighting the information of micro-spatial and amplitude variation with azimuth/offset in seismic reflection data. Then, the self-organizing map (SOM) neural network is used to compress a large amount of redundant information of the samples on the premise of maintaining the topology of the data. Finally, the artificial bee colony (ABC) algorithm is used to realize the global optimization of the clustering of neurons in the SOM output layer under the constraints of prior knowledge. Besides, according to the probability estimation results based on the probabilistic neural network (PNN), we define the confidence measures to quantitative analysis the classification results. The synthetic test and practical application results show that the proposed method can not only significantly improve the recognition ability of the seismic microfacies, but also improve the horizontal resolution and the accuracy of the seismic facies map. These satisfactory results illustrate the proposed method is an effective tool for seismic facies analysis.
- Aki, K. and Richards, P., 1980. Quantitative Seismology, Theory and Methods. W.H.
- Freeman and Co., San Francisco.
- Altinel, B. and Ganiz, M.C., 2016. A new hybrid semi-supervised algorithm for text
- classification with class-based semantics. Knowledge-Based Syst., 108: 50-64.
- Banharnsakun, A., Achalakul, T. and Sirinaovakul, B., 2011. The best-so-far selection in
- artificial bee colony algorithm. Appl. Soft Comput. J., 11(2):2888-2901.
- Angelo, M.S., Matos, M.C. and Marfurt. K.J., 2009. Integrated seismic texture
- segmentation and clustering analysis to delineate reservoir geometry. Expanded
- Abstr., 79th Ann. Internat. SEG Mtg., Houston: 1107-1111.
- Chopra, S. and Marfurt, K.J., 2005. Seismic attributes - A historical perspective.
- Geophysics, 70(5): 3SO-28SO.
- Chopra, S. and Alexeev, V., 2006. Applications of texture attribute analysis to 3D seismic
- data. The Leading Edge, 25(8): 934-940.
- Chuai, X.Y., Wang, S.X., Shi, P.D., Wei, X. and Chen, W., 2014. Applications of texture
- attribute analysis to seismic interpretation. J. Cent. South Univ., 21: 3617-3626.
- de Matos, M.C., Osorio, P.L. and Johann, P.R., 2007. Unsupervised seismic facies
- analysis using wavelet transform and self-organizing maps. Geophysics, 72(1):
- P9-P21.
- Dornaika, F. and Traboulsi, Y.E., 2017. Matrix exponential based semi-supervised
- discriminant embedding for image classification. Pattern Recognit., 61: 92-103.
- Erman, J., Mahanti, A., Arlitt, M., Cohen, I. and Williamson, C., 2007. Offline/real time
- traffic classification using semi-supervised learning. Perform. Evaluat., 64:
- 1194-1213.
- Estévez, P., Principe, J. and Zegers, P., 2012. Advances in Self-Organizing Maps. 9th
- Internat. Workshop, WSOM 2012, Santiago, Chile, December 12-14. Proc.,
- Advances in Intelligent Systems and Computing.
- Gao, D.L., 2006. Structure-oriented texture model regression for seismic structure
- visualization and interpretation. Gulf Coast Assoc. Geol. Soc. Transact., 56(3):
- 207-216.
- Gao, D.L., 2011. Latest developments in seismic texture analysis for subsurface structure,
- facies, and reservoir characterization: A review. Geophysics, 76(2): W1-W13.
- Guillen, P., Larrazabal, G., Gonzalez, G. and Sineva, D., 2015. Detecting salt body using
- texture classification. 14th Internat. Congr. Brazil. Geophys. Soc., Rio de Janeiro:
- 1155-1158.
- Haralick, R., Shanmugam K. and Dinstein, IL, 1973. Textural features for image
- classification. IEEE Transact. Systems, Man., Cybernet., 23: 610-621.
- Hong, Y. and Zhu, W.P., 2015. Spatial co-training for semi-supervised image
- classification. Patt. Recognit. Lett., 63: 59-65.
- Jassar, K.K. and Dhindsa, K.S., 2016. Comparative study and performance analysis of
- clustering algorithms. IJCA Proc. Internat. Conf. ICT for Healthcare, ICTHC
- 2015: 1-6.
- Lima, L.A., Gérnitz, N., Varella, L.E., Vellasco, M., Miiller, K. and Nakajima, S., 2017.
- Porosity estimation by semi-supervised learning with sparsely available labeled
- samples. Comput. Geosci., 106: 33-48.
- Marfurt, K.J., 2014. Seismic attributes and the road ahead. Expanded Abstr., 84th Ann.
- Internat. SEG Mtg., Denver: 4421-4426.
- Marroquin, I.D., Brault, J.J. and Hart, B.S., 2009. A visual data-mining methodology for
- seismic facies analysis. Part 1 - Testing and comparison with other unsupervised
- clustering methods. Geophysics, 74(1): P1-P11.
- Nivlet, P., 2007. Uncertainties in seismic facies analysis for reservoir characterisation or
- monitoring. Causes and consequences. Oil Gas Sci. Technol., 62: 225-235.
- Portela, N.M., Cavalcanti, G.D.C. and Ren, I.T., 2014. Semi-supervised clustering for
- MR brain image segmentation. Expert Syst. Applicat., 41: 1492-1497.
- Qi, J., Lin, T.F., Zhao, T., Li, F-Y. and Marfurt, K.J., 2016. Semisupervised multiattribute
- seismic facies analysis. Interpretation, 4(1): SB91-SB106.
- Roussinov, D.G. and Chen, H., 1998. A scalable self-organizing map algorithm for
- textual classification: a neural network approach to thesaurus generation.
- Communicat. Cognit. Artific. Intellig. Spring, 15: 81-112.
- Roy, A., Romero-Pelaez, A.S., Kwiatkowski, T.J. and Marfurt, K.J, 2014. Generative
- topographic mapping for seismic facies estimation of a carbonate wash, Veracruz
- Basin, southern Mexico. Interpretation, 2(1): SA31-SA47.
- Ruffo, P., Corradi, A., Corrao, A., Corrao, C.A. and Visentin, C., 2007. 3D hydrocarbon
- migration in alternate sand-shale environment through percolation technique.
- AAPG Hedberg Conf., The Hague, The Netherlands.
- Saha, S., Alok, A.K. and Ekbal, A., 2016. Brain image segmentation using
- semi-supervised clustering. Expert Syst. Applicat., 52: 50-63.
- Shafiq, M.A., Wang, Z., Amin, A., Hegazy, T., Deriche, M. and Al Regib, G., 2015.
- Detection of salt-dome boundary surfaces in migrated seismic volumes using
- gradient of textures. Expanded Abstr., 85th Ann. Internat. SEG Mtg., New
- Orleans: 1811-1815.
- Song, C.Y., Liu, Z.N., Cai, H.P., Qian, F. and Hu, G.M., 2016. Pre-stack-texture-based
- reservoir characteristics and seismic facies analysis. Appl. Geophys., 13: 69-79.
- Song, C.Y., Liu, Z.N., Cai, H.P., Wang, Y.J., Li, X.M. and Hu, G.M., 2017.
- Unsupervised seismic facies analysis with spatial constraints using regularized
- fuzzy c-means. J. Geophys. Engineer., 14:1535-1543.
- Song, C.Y., Liu, Z.N., Wang, Y.J., Li, X.M. and Hu, G.M., 2017. Multi-waveform
- classification for seismic facies analysis. Comput. Geosci., 101: 1-9.
- Song, C.Y., Liu, Z.N., Wang, Y.J., Xu, F., Li, X.M. and Hu, G.M., 2018. Adaptive phase
- k-means algorithm for waveform classification. Explor. Geophys., 49: 213-219.
- Tamir, H. and Ghassan, A., 2014. Texture attributes for detecting salt bodies in seismic
- data. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 1455-1458.
- Ulaby, R.T., Kouyate, F., Brisco, B. and Williams, T.H.L., 1986. Textural information in
- SAR images. IEEE Transact. Geosci. Remote Sens., 24: 235-245.
- Yenugu, M., Marfurt, K.J. and Matson, S., 2010. Seismic texture analysis for reservoir
- prediction and characterization. The Leading Edge, 29: 1116-1121.
- Zhao, T., Jayaram, V., Roy, A. and Marfurt, K.J., 2015. A comparison of classification
- techniques for seismic facies recognition. Interpretation, 3(4): SAE29-SAES58.
- Zhang, W., Tang, X.J. and Yoshida, T., 2015. TESC: An approach to TExt classification
- using semi-supervised clustering. Knowledge-Based Syst., 75: 152-160.
- Zhang, Y., Zheng, X.D., Li, J.S., Lu, J.T., Cao, C.Y. and Sui, J.K., 2015. Unsupervised
- seismic facies analysis technology based on SOM and PSO. Chin. J. Geophys., 58:
- 3412-3423.