ARTICLE

Seismic noise attenuation using an improved variational mode decomposition method

YATONG ZHOU YUE CHI
Show Less
School of Electronic and Information Engineering, Hebei University of Technology, Xiping Road No. 5340, Beichen District, Tianjin 300401, P.R. China,
JSE 2020, 29(1), 29–47;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Zhou, Y.T. and Chi, Y., 2020. Seismic noise attenuation using an improved variational mode decomposition method. Journal of Seismic Exploration, 29: 29-47. Seismic noise suppression is an important step in the seismic imaging community. We propose a dip-separated denoising method to attenuate spatially incoherent random noise. The variational mode decomposition (VMD) method is used to decompose the seismic data into different dip bands. It has a solid theoretical foundation of mathematics and high calculation efficiency. Besides, compared with the recursive mode decomposition algorithms, e.g., the EMD and EEMD methods, it has advantages in solving the mode mixing problem and more powerful anti-noise performance. The VMD method can adaptively decompose a seismic signal into several intrinsic mode functions (IMF). Decomposing the seismic data into oscillating IMF components is equivalent of decomposing the seismic data into different dipping components. To automatically define the optimal number of most oscillating components, we design the Kurtosis method. To eliminate the errors caused by end effect, we use a waveform matching extension algorithm to improve the VMD. The singular spectrum analysis (SSA) method is used to approximate the low-rank components in each separated dip band. In this paper, a simulated seismic dataset and a real seismic dataset are analyzed by the proposed algorithm. The results indicate that the proposed algorithm is robust to noise and has high de-noising precision.

Keywords
random noise suppression
variational mode decomposition
singular spectrum analysis
intrinsic mode functions
References
  1. Bai, M. and Wu, J., 2017. Efficient deblending using median filtering without correct
  2. normal moveout - with comparison on migrated images. J. Seismic Explor., 26: 455-
  3. Bai, M. and Wu, J., 2018. Seismic deconvolution using iteartive transform-domain sparse
  4. inversion. J. Seismic Explor., 27: 103-116.
  5. Bai, M., Wu, J., Xie, J. and Zhang, D., 2018a. Least-squares reverse time migration of
  6. blended data with low-rank constraint along structural direction. J. Seismic Explor.,
  7. 27: 29-48.
  8. Bai, M., Wu, J. and Zhang, H., 2019. Iterative deblending of simultaneous-source data
  9. using smoothed singular spectrum analysis. J. Appl. Geophys., 161: 261-269.
  10. Bai, M., Wu, J., Zu, S. and Chen, W., 2018b. A structural rank reduction operator for
  11. removing artifacts in least-squares reverse time migration. Comput. Geosci., 117:
  12. 9-20.
  13. Bekara, M. and van der Baan, M., 2007. Local singular value decomposition for signal
  14. enhancement of seismic data. Geophysics, 72(2): V59-V65.
  15. Canales, L., 1984. Random noise reduction. Expanded Abstr., 54th Ann. Internat. SEG
  16. Mtg., Atlanta: 525-527.
  17. Candés, E.J., Demanet, L., Donoho, D.L. and Ying, L., 2006. Fast discrete curvelet
  18. transforms. SIAM, Multiscale Model. Simulat., 5: 861-899.
  19. Chen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using an
  20. improved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367-380.
  21. Chen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improved
  22. complete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-495.
  23. Chen, W. and Song, H., 2018. Automatic noise attenuation based on clustering and
  24. empirical wavelet transform. J. Appl. Geophys., 159: 649-665.
  25. Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noise
  26. attenuation using adaptive randomized-order empirical mode decomposition. IEEE
  27. Geosci. Remote Sens. Lett., 14: 18-22.
  28. Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterative
  29. deblending by median filtering. J. Seismic Explor., 26: 25-47.
  30. Chen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybrid
  31. method based on ensemble empirical mode decomposition. J. Seismic Explor., 26:
  32. 227-249.
  33. Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional
  34. seismic data. Geophys. J. Internat., 209: 21-31.
  35. Chen, Y., 2018a,. Automatic velocity analysis using high-resolution hyperbolic Radon
  36. transform. Geophysics, 83(4): A53-A57.
  37. Chen, Y., 2018b. Fast waveform detection for microseismic imaging using unsupervised
  38. machine learning. Geophys. J. Internat.,, 215: 1185-1199.
  39. Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noise
  40. orthogonalization. Geophysics, 80(6): WD1-WD9.
  41. Chen, Y. and Fomel, S., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.
  42. Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source
  43. seismic data using seislet-domain shaping regularization. Geophysics, 79(5):
  44. V179-V189.
  45. Chen, Y., Huang, W., Zhou, Y., Liu, W. and Zhang, D., 2018. Plane-wave orthogonal
  46. polynomial transform for amplitude-preserving noise attenuation. Geophys. J.
  47. Internat., 214: 2207-2223.
  48. Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode
  49. decomposition predictive filtering. Geophysics, 79(3): V81-V91.
  50. Chen, Y., Ma, J. and Fomel, S., 2016b. Double-sparsity dictionary for seismic noise
  51. attenuation. Geophysics, 81(2): V17-V30.
  52. Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016c.
  53. Simultaneous denoising and reconstruction of 5D seismic data via damped
  54. rank-reduction method. Geophys. J. Internat.,, 206: 1695-1717.
  55. Chen, Y., Zu, S., Wang, Y. and Chen, X., 2019. Deblending of simultaneous-source data
  56. using a structure-oriented space-varying median filter. Geophys. J. Internat., 216:
  57. 1214-1232.
  58. Dragomiretskiy, K. and Zosso, D., 2014. Variational mode decomposition. IEEE
  59. Transact. Sign. Process., 62: 531-544.
  60. Fomel, S. and Liu, Y., 2010. Seislet transform and seislet frame. Geophysics, 75(3):
  61. V25-V38.
  62. Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a. Simultaneous-source separation using
  63. iterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-201.
  64. Gan, S., Wang, S., Chen, Y., Chen, X., Huang, W. and Chen, H., 2016b. Compressive
  65. sensing for seismic data reconstruction via fast projection onto convex sets based on
  66. seislet transform. J. Appl. Geophys., 130: 194-208.
  67. Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneous
  68. sources using a structural-oriented median filter in the flattened dimension. Comput.
  69. Geosci., 86: 46-54.
  70. Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016d. Velocity analysis of simultaneous-
  71. source data using high-resolution semblance-coping with the strong noise. Geophys.
  72. J. Internat., 204: 768-779.
  73. Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015. Dealiased seismic data
  74. interpolation using seislet transform with low-frequency constraint. IEEE Geosci.
  75. Remote Sens. Lett., 12: 2150-2154.
  76. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung,
  77. C.C. and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert
  78. spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc.
  79. London, Series A, 454: 903-995.
  80. Huang, W., Wang, R., Chen, X. and Chen, Y., 2017a. Double least squares projections
  81. method for signal estimation. IEEE Transact. Geosci. Remote Sens., 55: 4111-4129.
  82. Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction using
  83. randomized-order multichannel singular spectrum analysis. Geophysics, 82(2): V59-
  84. V74.
  85. Huang, W., Wang, R., Zhang, D., Zhou, Y., Yang, W. and Chen, Y., 2017c.
  86. Mathematical morphological filtering for linear noise attenuation of seismic data.
  87. Geophysics, 82(6): V369-V384.
  88. Huang, W., Wang, R., Zu, S. and Chen, Y., 2017d. Low-frequency noise attenuation in
  89. seismic and microseismic data using mathematical morphological filtering. Geophys.
  90. J. Internat., 211: 1318-1340.
  91. Huang, W., Wang, R. and Chen, Y., 2018. Regularized non-stationary morphological
  92. reconstruction algorithm for weak signal detection in micro-seismic monitoring.
  93. Methodology. Geophys. J. Internat., 213: 1189-1211.
  94. Li, H., R. Wang, S. Cao, Y. Chen, and W. Huang, 2016a. A method for low-frequency
  95. noise suppression based on mathematical morphology in microseismic monitoring.
  96. Geophysics, 81(3): V159-V 167.
  97. Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection
  98. using multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133:
  99. 39-49.
  100. Liu, G., Chen, X., Du, J. and Wu, K., 2012. Random noise attenuation using f-x
  101. regularized nonstationary autoregression. Geophysics, 77(2): V61-V69.
  102. Liu, W., Cao, S. and Chen, Y., 2016a. Applications of variational mode decomposition in
  103. seismic time-frequency analysis. Geophysics, 81(5): V365-V378.
  104. Liu, W., Cao, S. and Chen, Y., 2016b. Seismic time-frequency analysis via empirical
  105. wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.
  106. Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016c. One-step slope estimation
  107. for dealiased seismic data reconstruction via iterative seislet thresholding. IEEE
  108. Geosci. Remote Sens. Lett., 13: 1462-1466.
  109. Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detection
  110. approach via high-resolution frequency-dependent AVO inversion based on
  111. variational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56: 2007-
  112. Liu, W., Cao, S., Wang, Z., Kong, X. and Chen, Y., 2017. Spectral decomposition for
  113. hydrocarbon detection based on YMD and Teager-Kaiser energy. IEEE Geosci.
  114. Remote Sens. Lett., 14: 539-543.
  115. Lv, H. and Bai, M., 2018. Learning dictionary in the approximately flattened structure
  116. domain. J. Appl. Geophys., 159: 522-531.
  117. Rubinstein, R., Zibulevsky, M. and Elad, M., 2008. Efficient implementation of the
  118. K-SVD algorithm using batch orthogonal matching pursuit. Techn. Rep.
  119. Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising and
  120. interpolation of 2D seismic data using data-driven non-negative dictionary learning.
  121. Sign. Process., 141: 309-321.
  122. Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-driven
  123. multi-task sparse dictionary learning for noise attenuation of 3D seismic data.
  124. Geophysics, 82(6): V385-V396.
  125. Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneous
  126. denoising and interpolation of 3D seismic data via damped data-driven optimal
  127. singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.
  128. Vautard, R., Yiou, P. and Ghil, M., 1992. Singular-spectrum analysis: A toolkit for short,
  129. noisy chaotic signals. Physica D: Nonlin. Phenom., 58: 95-126.
  130. Wang, Y., Ma, X., Zhou, H. and Chen, Y., 2018. L1-2 minimization for exact and stable
  131. seismic attenuation compensation. Geophys. J. Internat., 213: 1629-1646.
  132. Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017. Three-operator proximal
  133. splitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens.
  134. Lett., 14: 1830-1834.
  135. Wu, J. and Bai, M., 2018a. Attenuating seismic noise via incoherent dictionary learning. J.
  136. Geophys. Engineer., 15: 1327.
  137. Wu, J. and Bai, M., 2018b. Fast principal component analysis for stacking seismic data. J.
  138. Geophys. Engineer., 15: 295-306.
  139. Wu, J. and Bai, M., 2018c. Incoherent dictionary learning for reducing crosstalk noise in
  140. least-squares reverse time migration. Comput. Geosci., 114: 11-21.
  141. Wu, J. and Bai, M., 2018d. Stacking seismic data based on principal component analysis.
  142. J. Seismic Explor., 27: 331-348.
  143. Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation via
  144. an iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13:
  145. 1915-1919.
  146. Zhang, D., Chen, Y., Huang, W. and Gan, S., 2016. Multi-step damped multichannel
  147. singular spectrum analysis for simultaneous reconstruction and denoising of 3D
  148. seismic data. J. Geophys. Engineer., 13: 704-720.
  149. Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid
  150. rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D
  151. seismic data. Geophysics, 82(5): V351-V367.
  152. Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016. A periodically
  153. varying code for improving deblending of simultaneous sources in marine
  154. acquisition. Geophysics, 81(3): V213-V225.
  155. Zu, S., Zhou, H., Chen, H., Zheng, H. and Chen, Y., 2017a. Two field trials for
  156. deblending of simultaneous source surveys: why we failed and why we succeeded? J.
  157. Appl. Geophys., 143: 182-194.
  158. Zu, S., Zhou, H., Li, Q., Chen, H., Zhang, Q., Mao, W. and Chen, Y., 2017b.
  159. Shot-domain deblending using least-squares inversion. Geophysics, 82(4):
  160. V241-V256.
  161. Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017c. Iterative
  162. deblending of simultaneous-source data using a coherency-pass shaping operator.
  163. Geophys. J. Internat., 211: 541-557.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing