ARTICLE

Estimating fluid term and anisotropic parameters in saturated transversely isotropic media with aligned fractures

XINPENG PAN1,2 GUANGZHI ZHANG2 JIANXIN LIU1 ZHENGYONG REN1*
Show Less
1 School of Geoscience and Info-Physics, Central South University, Changsha 410082, P.R. China.,
2 School of Sciences, China University of Petroleum (East China), Qingdao 266580, P.R. China.,
JSE 2021, 30(1), 65–84;
Submitted: 9 June 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published: 9 June 2025
© 2025 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Pan, X.P., Zhang, G.Z., Liu, JX. and Ren, Z.Y., 2020. Estimating fluid term and anisotropic parameters in saturated transversely isotropic media with aligned fractures. Journal of Seismic Exploration, 30: 65-84. The Gassmann’s equation and general linear-slip model can be combined to characterize the effective elastic properties of a fluid-saturated transversely isotropic medium with aligned fractures. Such a medium represents a saturated fractured porous rock with orthorhombic symmetry. Combining the analysis of orthorhombic anisotropic poroelasticity, we first propose the derivation for the weak-anisotropy stiffnesses of a saturated fractured porous medium with orthorhombic symmetry in terms of the moduli of the background homogeneous isotropic rock, Thomsen-type anisotropy parameters, fracture weaknesses, and fluid modulus. Compared with the exact stiffness components, the approximated components of saturated fractured porous media with orthorhombic symmetry satisfy the actual demands in practical use. Using the approximately linearized expressions of the stiffness components of saturated orthorhombic model with the assumption of small Thomsen-type anisotropic parameters and small fracture parameters, we then derive a linearized PP-wave reflection coefficient in such an orthorhombic model, including a fluid term, a rigidity term, a density term, two Thomsen-type anisotropy terms, and three fracture-weakness terms. With a novel parameterization for Thomsen-type anisotropy parameters and fracture weaknesses, we derive an azimuthal elastic impedance equation with decoupled fluid term and anisotropic parameters. Synthetic and real data sets are used to illustrate the proposed approach in fluid saturated fractured porous rocks with orthorhombic symmetry, Sichuan Basin, China.

Keywords
orthorhombic symmetry
fracture weakness
Bayesian seismic inversion
saturated fractured porous media
decoupled fluid and fracture properties
References
  1. Bachrach, R., Sengupta, M. and Salama, A., 2009. Reconstruction of the layer anisotropic
  2. elastic parameter and high resolution fracture characterization from P-wave data: a
  3. case study using seismic inversion and Bayesian rock physics parameter estimation.
  4. Geophys. Prosp., 57: 253-262.
  5. Bachrach, R., 2015. Uncertainty and nonuniqueness in linearized AVAZ for
  6. orthorhombic media. The Leading Edge, 34: 1048-1056.
  7. Bakulin, A., Grechka, V. and Tsvankin, I., 2000a. Estimation of fracture parameters from
  8. reflection seismic data-Part II: Fractured models with orthorhombic symmetry.
  9. Geophysics, 65: 1803-1817.
  10. Bakulin, A., Grechka, V. and Tsvankin, I., 2000b. Estimation of fracture parameters from
  11. reflection seismic data-Part II: Fractured models with monoclinic symmetry.
  12. Geophysics, 65: 1818-1830.
  13. Bakulin, A., Grechka, V. and Tsvankin, I., 2002. Seismic inversion for the parameters of
  14. two orthogonal fractures sets in a VTI background medium. Geophysics, 67:
  15. 292-299.
  16. Chen, H., Pan, X., Ji, Y. and Zhang, G., 2017. Bayesian Markov Chain Monte Carlo
  17. inversion for weak anisotropy parameters and fracture weaknesses using azimuthal
  18. elastic impedance. Geophys. J. Internat., 210: 801-818.
  19. Connolly, P., 1999. Elastic impedance. The Leading Edge, 18: 438-452.
  20. Downton, J.E. and Roure, B., 2015. Interpreting azimuthal Fourier coefficients for
  21. anisotropic and fracture parameters. Interpretation, 3: ST9-ST27.
  22. Far, M.E., Sayers, C.M., Thomsen, L., Han, D.H. and Castagna, J.P., 2013. Seismic
  23. characterization of naturally fractured reservoirs using amplitude versus offset and
  24. azimuth analysis. Geophys. Prosp., 61: 427-447.
  25. Gassmann, F., 1951. Uber die elastizitat poréser Medien: Ver. Natur. Gesellsch. Ziirich,
  26. 96: 1-23.
  27. Golikov, P. and Stovas, A., 2010. New weak-contrast approximation for reflection
  28. coefficients in transversely isotropic media. J. Geophys. Engineer., 7: 343-350.
  29. Gurevich, B., 2003. Elastic properties of saturated porous rocks with aligned fractures.
  30. J. Appl. Geophys., 54. 203-218.
  31. Han, D.H. and Batzle, M.L., 2004. Gassmann’s equation and fluid-saturation effects on
  32. seismic velocities. Geophysics, 69: 398-405.
  33. Liu, E. and Martinez, A., 2012. Seismic Fracture Characterization. EAGE, Houten,
  34. Netherlands.
  35. Martins, J.L., 2006. Elastic impedance in weakly anisotropic media. Geophysics, 71:
  36. 2092-2096.
  37. Huang, L., Stewart, R.R., Sil, S. and Dyaur, N., 2015. Fluid substitution effects on
  38. seismic anisotropy. J. Geophys. Res., Solid Earth, 120: 850-863.
  39. Ivanov, Y. and Stovas, A., 2017. Weak-anisotropy approximation for P-wave reflection
  40. coefficient at the boundary between two tilted transversely isotropic media. Geophys.
  41. Prosp., 65: 485-502.
  42. Pan, X., Zhang, G., Chen, H. and Yin, X., 2017a. McMC-based nonlinear EIVAZ
  43. inversion driven by rock physics. J. Geophys. Engineer., 14: 368-379.
  44. Pan, X., Zhang, G. and Yin, X., 2017b. Azimuthally anisotropic elastic impedance
  45. inversion for fluid indicator driven by rock physics. Geophysics, 82(6):
  46. C211-C227.
  47. Pan, X., Zhang, G. and Yin, X., 2018a. Azimuthal seismic amplitude variation with offset
  48. and azimuth inversion in weakly anisotropic media with orthorhombic symmetry.
  49. Surv. Geophys., 39: 99-123.
  50. Pan, X. and Zhang, G., 2018b. Model parameterization and PP-wave Amplitude Versus
  51. Angle and Azimuth (AVAZ) direct inversion for fracture quasi-weaknesses in
  52. weakly anisotropic elastic media. Survey. Geophys., 39: 937-964.
  53. Pan, X., Zhang, G., Chen, H. and Yin, X., 2018c. Elastic impedance parameterization and
  54. inversion for fluid modulus and dry fracture quasi-weaknesses in a gas-saturated
  55. reservoir. J. Natur. Gas Sci. Engineer., 49: 194-212.
  56. Pan, X. and Zhang, G., 2018d. Estimation of fluid indicator and dry fracture compliances
  57. using azimuthal seismic reflection data in a gas-saturated fractured reservoir. J.
  58. Petrol. Sci. Engineer., 167: 737-751.
  59. PSen¢ik, I. and Vavryéuk, V., 1998. Weak contrast PP wave R/T coefficients in weakly
  60. anisotropic elastic media. Pure Appl. Geophys., 151: 699-718.
  61. Russel, B.H., Gray, D. and Hampson, D.P., 2011. Linearized AVO and poroelasticity.
  62. Geophysics, 76(3): C19-C29.
  63. Sayers, C.M., 1994. P-wave propagation in weakly anisotropic media. Geophys. J.
  64. Internat., 116: 799-805.
  65. Sayers, C., 1998. Misalignment of the orientation of fractures and the principal axes for
  66. P- and S-waves in rocks containing multiple non-orthogonal fracture sets. Geophys. J.
  67. Internat., 133: 459-466.
  68. Sayers, C.M., 2009. Seismic characterization of reservoirs containing multiple fracture
  69. sets. Geophys. Prosp., 57: 187-192.
  70. Schoenberg, M. and Protazio, J., 1990. ‘Zoeppritz’ rationalized and generalized to
  71. anisotropy. J. Acoust. Soc. Am., 88: S46.
  72. Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wave
  73. behavior in a vertically fractured earth. Geophysics, 62: 1954-1957.
  74. Schoenberg, M. and Douma, J., 1998. Elastic wave propagation in media with parallel
  75. fractures and aligned cracks. Geophys. Prosp., 36: 571-590.
  76. Shaw, R.K. and Sen, M.K., 2004. Born integral, stationary phase and linearized reflection
  77. coefficients in weak anisotropic media. Geophys. J. Internat., 158: 225-238.
  78. Shaw, R.K. and Sen, M.K., 2006. Use of AVOA data to estimate fluid indicator in a
  79. vertically fractured medium. Geophysics, 71(3): C15-C24.
  80. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
  81. Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media.
  82. Geophysics, 62: 1292-1309.
  83. Zong, Z. and Yin, X., 2016. Direct inversion of Young’s and Poisson impedances for
  84. fluid discrimination. Geofluids, 16: 1006-1016.
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 Print ISSN: 0963-0651, Published by AccScience Publishing