Estimating fluid term and anisotropic parameters in saturated transversely isotropic media with aligned fractures

Pan, X.P., Zhang, G.Z., Liu, JX. and Ren, Z.Y., 2020. Estimating fluid term and anisotropic parameters in saturated transversely isotropic media with aligned fractures. Journal of Seismic Exploration, 30: 65-84. The Gassmann’s equation and general linear-slip model can be combined to characterize the effective elastic properties of a fluid-saturated transversely isotropic medium with aligned fractures. Such a medium represents a saturated fractured porous rock with orthorhombic symmetry. Combining the analysis of orthorhombic anisotropic poroelasticity, we first propose the derivation for the weak-anisotropy stiffnesses of a saturated fractured porous medium with orthorhombic symmetry in terms of the moduli of the background homogeneous isotropic rock, Thomsen-type anisotropy parameters, fracture weaknesses, and fluid modulus. Compared with the exact stiffness components, the approximated components of saturated fractured porous media with orthorhombic symmetry satisfy the actual demands in practical use. Using the approximately linearized expressions of the stiffness components of saturated orthorhombic model with the assumption of small Thomsen-type anisotropic parameters and small fracture parameters, we then derive a linearized PP-wave reflection coefficient in such an orthorhombic model, including a fluid term, a rigidity term, a density term, two Thomsen-type anisotropy terms, and three fracture-weakness terms. With a novel parameterization for Thomsen-type anisotropy parameters and fracture weaknesses, we derive an azimuthal elastic impedance equation with decoupled fluid term and anisotropic parameters. Synthetic and real data sets are used to illustrate the proposed approach in fluid saturated fractured porous rocks with orthorhombic symmetry, Sichuan Basin, China.
- Bachrach, R., Sengupta, M. and Salama, A., 2009. Reconstruction of the layer anisotropic
- elastic parameter and high resolution fracture characterization from P-wave data: a
- case study using seismic inversion and Bayesian rock physics parameter estimation.
- Geophys. Prosp., 57: 253-262.
- Bachrach, R., 2015. Uncertainty and nonuniqueness in linearized AVAZ for
- orthorhombic media. The Leading Edge, 34: 1048-1056.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2000a. Estimation of fracture parameters from
- reflection seismic data-Part II: Fractured models with orthorhombic symmetry.
- Geophysics, 65: 1803-1817.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2000b. Estimation of fracture parameters from
- reflection seismic data-Part II: Fractured models with monoclinic symmetry.
- Geophysics, 65: 1818-1830.
- Bakulin, A., Grechka, V. and Tsvankin, I., 2002. Seismic inversion for the parameters of
- two orthogonal fractures sets in a VTI background medium. Geophysics, 67:
- 292-299.
- Chen, H., Pan, X., Ji, Y. and Zhang, G., 2017. Bayesian Markov Chain Monte Carlo
- inversion for weak anisotropy parameters and fracture weaknesses using azimuthal
- elastic impedance. Geophys. J. Internat., 210: 801-818.
- Connolly, P., 1999. Elastic impedance. The Leading Edge, 18: 438-452.
- Downton, J.E. and Roure, B., 2015. Interpreting azimuthal Fourier coefficients for
- anisotropic and fracture parameters. Interpretation, 3: ST9-ST27.
- Far, M.E., Sayers, C.M., Thomsen, L., Han, D.H. and Castagna, J.P., 2013. Seismic
- characterization of naturally fractured reservoirs using amplitude versus offset and
- azimuth analysis. Geophys. Prosp., 61: 427-447.
- Gassmann, F., 1951. Uber die elastizitat poréser Medien: Ver. Natur. Gesellsch. Ziirich,
- 96: 1-23.
- Golikov, P. and Stovas, A., 2010. New weak-contrast approximation for reflection
- coefficients in transversely isotropic media. J. Geophys. Engineer., 7: 343-350.
- Gurevich, B., 2003. Elastic properties of saturated porous rocks with aligned fractures.
- J. Appl. Geophys., 54. 203-218.
- Han, D.H. and Batzle, M.L., 2004. Gassmann’s equation and fluid-saturation effects on
- seismic velocities. Geophysics, 69: 398-405.
- Liu, E. and Martinez, A., 2012. Seismic Fracture Characterization. EAGE, Houten,
- Netherlands.
- Martins, J.L., 2006. Elastic impedance in weakly anisotropic media. Geophysics, 71:
- 2092-2096.
- Huang, L., Stewart, R.R., Sil, S. and Dyaur, N., 2015. Fluid substitution effects on
- seismic anisotropy. J. Geophys. Res., Solid Earth, 120: 850-863.
- Ivanov, Y. and Stovas, A., 2017. Weak-anisotropy approximation for P-wave reflection
- coefficient at the boundary between two tilted transversely isotropic media. Geophys.
- Prosp., 65: 485-502.
- Pan, X., Zhang, G., Chen, H. and Yin, X., 2017a. McMC-based nonlinear EIVAZ
- inversion driven by rock physics. J. Geophys. Engineer., 14: 368-379.
- Pan, X., Zhang, G. and Yin, X., 2017b. Azimuthally anisotropic elastic impedance
- inversion for fluid indicator driven by rock physics. Geophysics, 82(6):
- C211-C227.
- Pan, X., Zhang, G. and Yin, X., 2018a. Azimuthal seismic amplitude variation with offset
- and azimuth inversion in weakly anisotropic media with orthorhombic symmetry.
- Surv. Geophys., 39: 99-123.
- Pan, X. and Zhang, G., 2018b. Model parameterization and PP-wave Amplitude Versus
- Angle and Azimuth (AVAZ) direct inversion for fracture quasi-weaknesses in
- weakly anisotropic elastic media. Survey. Geophys., 39: 937-964.
- Pan, X., Zhang, G., Chen, H. and Yin, X., 2018c. Elastic impedance parameterization and
- inversion for fluid modulus and dry fracture quasi-weaknesses in a gas-saturated
- reservoir. J. Natur. Gas Sci. Engineer., 49: 194-212.
- Pan, X. and Zhang, G., 2018d. Estimation of fluid indicator and dry fracture compliances
- using azimuthal seismic reflection data in a gas-saturated fractured reservoir. J.
- Petrol. Sci. Engineer., 167: 737-751.
- PSen¢ik, I. and Vavryéuk, V., 1998. Weak contrast PP wave R/T coefficients in weakly
- anisotropic elastic media. Pure Appl. Geophys., 151: 699-718.
- Russel, B.H., Gray, D. and Hampson, D.P., 2011. Linearized AVO and poroelasticity.
- Geophysics, 76(3): C19-C29.
- Sayers, C.M., 1994. P-wave propagation in weakly anisotropic media. Geophys. J.
- Internat., 116: 799-805.
- Sayers, C., 1998. Misalignment of the orientation of fractures and the principal axes for
- P- and S-waves in rocks containing multiple non-orthogonal fracture sets. Geophys. J.
- Internat., 133: 459-466.
- Sayers, C.M., 2009. Seismic characterization of reservoirs containing multiple fracture
- sets. Geophys. Prosp., 57: 187-192.
- Schoenberg, M. and Protazio, J., 1990. ‘Zoeppritz’ rationalized and generalized to
- anisotropy. J. Acoust. Soc. Am., 88: S46.
- Schoenberg, M. and Helbig, K., 1997. Orthorhombic media: Modeling elastic wave
- behavior in a vertically fractured earth. Geophysics, 62: 1954-1957.
- Schoenberg, M. and Douma, J., 1998. Elastic wave propagation in media with parallel
- fractures and aligned cracks. Geophys. Prosp., 36: 571-590.
- Shaw, R.K. and Sen, M.K., 2004. Born integral, stationary phase and linearized reflection
- coefficients in weak anisotropic media. Geophys. J. Internat., 158: 225-238.
- Shaw, R.K. and Sen, M.K., 2006. Use of AVOA data to estimate fluid indicator in a
- vertically fractured medium. Geophysics, 71(3): C15-C24.
- Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51: 1954-1966.
- Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for orthorhombic media.
- Geophysics, 62: 1292-1309.
- Zong, Z. and Yin, X., 2016. Direct inversion of Young’s and Poisson impedances for
- fluid discrimination. Geofluids, 16: 1006-1016.