AccScience Publishing / JSE / Volume 33 / Issue 6 / DOI: 10.36922/JSE024490001
Cite this article
2
Download
6
Citations
18
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

FINITE-DIFFERENCE REVERSE-TIME MIGRATION BASED ON ANISOTROPIC PURE QP WAVE EQUATION IN TTI MEDIA.

YUJIAN ZHANG1 JIANPING HUANG1 QIANG MAO1
Show Less
1 School of Computer and Information Technology, Northeast Petroleum University, Da Qing, Heilongjiang, 163318, China
JSE 2024 , 33(6), 1–21; https://doi.org/10.36922/JSE024490001
Submitted: 24 February 2024 | Accepted: 6 August 2024 |
© 2024 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The anisotropic effects in real earth media can induce waveform distortion on seismic wave propagation. Neglecting these effects in seismic imaging processing can lead to a degradation in imaging resolution. Therefore, starting from the exact P-wave dispersion relation, we derive a pure acoustic wave equation for tilted transversely isotropic (TTI) media to accurately characterize the anisotropic effects. In contrast to the coupled pseudo-acoustic TTI wave equation, our new pure acoustic TTI wave equation generates a noise-free wavefields and remains stable for anisotropic parameters (ε < δ). The newly derived pure acoustic TTI wave equation accurately simulates the P-wave kinematic features, as demonstrated through theoretical analysis. Additionally, building on the proposed wave equation, we formulate a finite-difference operator and obtain a pure acoustic TTI wave equation that can be solved by finite-difference (FD) method. Numerical tests illustrate that the proposed FD-solvable pure acoustic TTI wave equation is highly efficient in wavefield simulation. Finally, based on the newly derived FD-solvable pure acoustic TTI wave equation, we implement TTI reverse time migration (TTI RTM). Numerical examples demonstrate the efficacy of the proposed TTI RTM scheme in correcting for anisotropic effects.

References
  1. Alkhalifah, T. (1998). Acoustic approximations for processing in transversely isotropic media. Geophysics 63 (2), 623-631. doi:10.1190/1.1444361
  2. Alkhalifah, T. (2000). An acoustic wave equation for anisotropic media. Geophysics 65 (4), 1239–1250. doi:10.1190/1.1444815
    Cheng, J., and Fomel, S. (2014). Fast algorithms for elastic-wave-mode separation and vector decomposition using low-rank approximation for anisotropic media. Geophysics 79 (4), C97-C110. doi:10.1190/geo2014-0032.1
  3. Cheng, J., Alkhalifah, T., Wu, Z., Zou, P., and Wang, C. (2016). Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media. Geophysics 81(2), T63-T77. doi:10.1190/geo2015-0184.1
  4. Chu, C., Macy, B. K., and Anno, P. D. (2011). Approximation of pure acoustic seismic wave propagation in TTI media. Geophysics 76 (5), WB97-WB107. doi:10.1190/geo2011-0092.1
  5. Chu, C., Macy, B. K., and Anno, P. D. (2013). Pure acoustic wave propagation in transversely isotropic media by the pseudo-spectral method. Geophys. Prospect. 61 (3), 556-567. doi:10.1111/j.1365-2478.2012.01077.x
  6. Duveneck, E., Milcik, P., Bakker, P. M. and Perkins, C. (2008). “Acoustic VTI wave equations and their application for anisotropic reverse‐time migration,” in SEG Technical Program Expanded Abstracts, Las Vegas, Nevada, November 12, 2008, 2186-2190. doi:10.1190/1.3059320
  7. Fletcher, R. P., Du, X., and Fowler, P. J. (2009). Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics 74 (6), WCA179-WCA187.doi:10.1190/1.3269902
  8. Fomel, S., Ying, L., and Song, X. (2013). Seismic wave extrapolation using lowrank symbol approximation. Geophys. Prospect. 61(3), 526-536. doi:10.1111/j.1365-2478.2012.01064.x
  9. Grechka, V., Zhang, L., and Rector III, J. W. (2004). Shear waves in acoustic anisotropic media. Geophysics 69 (2), 576-582. doi:10.1190/1.1707077
  10. Huang, J., Mao, Q., Mu, X., Yang, J., Ivan, M. S., Liu, Z., and Zhang, S. (2023). Least-squares reverse time migration based on an efficient pure qP-wave equation. Geophys. Prospect. doi: 10.1111/1365-2478.13326
  11. Li, B., and Stovas, A. (2021). Decoupled approximation and separate extrapolation of P-and SV-waves in transversely isotropic media. Geophysics 86 (4), C133-C142. doi:10.1190/geo2020-0232.1
  12. Li, X., and Zhu, H. (2018). A finite-difference approach for solving pure quasiP-wave equations in transversely isotropic and orthorhombic media. Geophysics 83 (4), C161-C172. doi:10.1190/geo2017-0405.1
  13. Liang, K., Cao, D., Sun, S., and Yin, X. (2023). Decoupled wave equation and forward modeling of qP wave in VTI media with the new acoustic approximation. Geophysics 88 (1), WA335-WA344. doi:10.1190/geo2022-0292.1
  14. Mao, Q., Huang, J. P., Mu, X. R., Yang, J. D., and Zhang, Y. J. (2023). Accurate simulations of pure-viscoacoustic wave propagation in tilted transversely isotropic media. Pet. Sci. doi: 10.1016/j.petsci.2023.11.005
  15. Mu, X., Huang, J., Yong, P., Huang, J., Guo, X., Liu, D., and Hu, Z. (2020). Modeling of pure qP-and qSV-waves in tilted transversely isotropic media with the optimal quadratic approximation. Geophysics 85 (2), C71-C89. doi:10.1190/geo2018-0460.1
  16. Mu, X., Huang, J., Yang, J., Guo, X., and Guo, Y. (2020). Least-squares reverse time migration in TTI media using a pure qP-wave equation. Geophysics 85 (4), S199-S216. doi:10.1190/geo2019-0320.1
  17. Nikonenko, Y., and Charara, M. (2021). Efficient acoustic scalar wave equation modeling in VTI media. Geophysics 86 (1), T75-T90. doi:10.1190/geo2019-0846.1
  18. Nikonenko, Y., and Charara, M. (2023). Explicit finite-difference modeling for the acoustic scalar wave equation in tilted transverse isotropic media with optimal operators. Geophysics 88 (2), T65-T73. doi:10.1190/geo2021-0510.1
  19. Schleicher, J., and Costa, J. C. (2016). A separable strong-anisotropy approximation for pure qP-wave propagation in transversely isotropic media. Geophysics 81 (6), C337-C354. doi:10.1190/geo2016-0138.1
  20. Song, X., Fomel, S., and Ying, L. (2013). Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophys. J. Int. 193 (2), 960-969. doi:10.1093/gji/ggt017
  21. Stovas, A., Alkhalifah, T., and bin Waheed, U. (2020). Pure P-and S-wave equations in transversely isotropic media. Geophys. Prospect. 68 (9),2762-2769. doi:10.1111/1365-2478.13026
  22. Sun, J., Fomel, S., and Ying, L. (2016). Low-rank one-step wave extrapolation for reverse time migration. Geophysics 81 (1), S39-S54. doi:10.1190/geo2015-0183.1
  23. Thomsen, L. (1986). Weak elastic anisotropy. Geophysics 51 (10), 1954-1966. doi: 10.1190/1.1442051
  24. Tsvankin, I. (1996). P-wave signatures and notation for transversely isotropic media: An overview. Geophysics 61 (2), 467-483. doi:10.1190/1.1443974
  25. Wu, Z., and Alkhalifah, T. (2014). The optimized expansion based lowrank method for wavefield extrapolation. Geophysics 79 (2), T51-T60.doi:10.1190/geo2013-0174.1
  26. Xu, S., and Zhou, H. (2014). Accurate simulations of pure quasi-P-waves in complex anisotropic media. Geophysics 79 (6), T341-T348. doi:10.1190/geo2014-0242.1
  27. Xu, S., Stovas, A., Alkhalifah, T., and Mikada, H. (2020). New acoustic approximation for transversely isotropic media with a vertical symmetry axis. Geophysics 85 (1), C1-C12. doi: 10.1190/geo2019-0100.1
  28. Wang, W., Hua, B., McMechan, G. A., and Duquet, B. (2018). P-and S-decomposition in anisotropic media with localized low-rank
    approximations. Geophysics 83 (1), C13-C26. doi:10.1190/geo2017-0138.1
  29. Yang, J., Zhu, H., McMechan, G., and Yue, Y. (2018). Time-domain leastsquares migration using the Gaussian beam summation method. Geophys. J. Int. 214 (1), 548-572. doi:10.1093/gji/ggy142
  30. Zhan, G., Pestana, R. C., and Stoffa, P. L. (2012) Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics,77(2), 37–45. doi:10.1190/geo2011-0175.1
  31. Zhan, G., Pestana, R. C., and Stoffa, P. L. (2013). An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure
    P-wave equation. J. Geophys. Eng. 10 (2), 025004. doi:10.1088/1742-2132/10/2/025004
  32. Zhang, Z. D., Alkhalifah, T., and Wu, Z. (2019). A hybrid finite-difference/low-rank solution to anisotropy acoustic wave equations. Geophysics 84(2), T83-T91. doi:10.1190/geo2018-0333.1
  33. Zhang, Y., Zhang, H., and Zhang, G. (2011) A stable TTI reverse time migration and its implementation. Geophysics, 76(3), 3–11. doi:10.1190/1.3554411
  34. Zhou, H., G. Zhang, and R. Bloor. (2006a). “An anisotropic acoustic wave equation for VTI media.” in 68th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Vienna, June 12, 2006, H033.doi: 10.3997/2214-4609.201402310.
  35. Zhou, H., G. Zhang, and R. Bloor. (2006b). “An anisotropic acoustic wave equation for modeling and migration in 2D TTI media.” in SEG Technical Program Expanded Abstracts, New Orleans, Louisiana, October 3, 2006,194–198. doi: 10.1190/1.2369913.
  36. Zhu, F., Huang, J., and Yu, H. (2018). Least-squares Fourier finite-difference pre-stack depth migration for VTI media., J. Geophys. Eng. 15 (2), 421-437. doi:10.1088/1742-2140/aa9a0a
  37. Zhu, H. (2017). Elastic wavefield separation based on the Helmholtz decomposition. Geophysics 82 (2), S173-S183. doi:10.1190/geo2016-
    0419.1
Share
Back to top
Journal of Seismic Exploration, Electronic ISSN: 0963-0651 , Published by AccScience Publishing